1,865 research outputs found

    Solar microclimatology

    Get PDF
    It has become apparent in recent years that solar energy can be used for electric power production by several methods. Because of the diffuse nature of the solar insolation, the area involved in any central power plant design can encompass several square miles. A detailed design of these large area collection systems will require precise knowledge of the local solar insolation. Detailed information will also be needed concerning the temporal nature of the insolation and the local spatial distribution. Therefore, insolation data was collected and analyzed for a network of sensors distributed over an area of several square kilometers in Arizona. The analyses of this data yielded probability distributions of cloud size, velocity, and direction of motion which were compared with data obtained from the National Weather Service. Microclimatological analyses were also performed for suitable modeling parameters pertinent to large scale electric power plant design. Instrumentation used to collect the data is described

    Qualification test results for blue-red reflecting solar covers

    Get PDF
    Recent market forces and design innovations have spurred the development of solar cell covers that significantly reduce the solar absorptance for a cell array. GaAs cells, using Ge as the substrate host material, can have a significantly higher output if the solar absorptance of the cell array is reduced. New optical coating design techniques have allowed the construction of covers that reflect the ultraviolet energy (below 350 nm) and the near infrared energy (above 900 nm) resulting in the beneficial reduction in absorptance. Recent modeling suggests three or more present output increase due to the lowered temperature with such a device. Within the last several months we have completed the testing of production samples of these new covers in a qualification series that included the usual environmental effects associated with the routine testing of solar cell covers and the combined effects of protons, electrons and solar UV as would be encountered in space. For the combined effects testing the samples were exposed to 300 sun days equivalent UV, 5 x 10(exp 14)/sq cm of 0.5 MeV protons and 10(exp 15)/sq cm of 1.0 MeV electrons. Measurements of the reflectance, transmission, emittance and other appropriate parameters were made before and after the testing. As measured by the averaged transmission over the cell operating band, the change in transmission for the samples was less than or about equal to 1 percent. The details of the testing and the results in terms of transmission, reflectance and emittance are discussed in the paper

    Multiwavelength Observations of the Hot DB Star PG 0112+104

    Full text link
    We present a comprehensive multiwavelength analysis of the hot DB white dwarf PG 0112+104. Our analysis relies on newly-acquired FUSE observations, on medium-resolution FOS and GHRS data, on archival high-resolution GHRS observations, on optical spectrophotometry both in the blue and around Halpha, as well as on time-resolved photometry. From the optical data, we derive a self-consistent effective temperature of 31,300+-500 K, a surface gravity of log g = 7.8 +- 0.1 (M=0.52 Msun), and a hydrogen abundance of log N(H)/N(He) < -4.0. The FUSE spectra reveal the presence of CII and CIII lines that complement the previous detection of CII transitions with the GHRS. The improved carbon abundance in this hot object is log N(C)/N(He) = -6.15 +- 0.23. No photospheric features associated with other heavy elements are detected. We reconsider the role of PG 0112+104 in the definition of the blue edge of the V777 Her instability strip in light of our high-speed photometry, and contrast our results with those of previous observations carried out at the McDonald Observatory.Comment: 10 pages in emulateapj, 9 figures, accepted for publication in Ap

    Intercomparison of ground-based and space solar flux measurements

    Get PDF
    Detailed temporal measurements of the solar flux at one location are performed. These data are then analyzed and compared to the potential of space measurements which allow one to consider the flux falling on areas of the earth. An important result of the research is that the temporal characteristics of the flux in the presence of a real atmosphere would be difficult to obtain from space and that the variations in the flux can be highly significant in regard to most solar conversion schemes. The detailed results of the research are presented. The instruments developed to separate the direct and scattered solar flux, the computer analysis methods developed, and the results of the research, presented as both graphical and tabular data, are discussed

    Vortex Lock-In Deep in the Bose Glass

    Get PDF
    We use a Bi gaussmeter of micron dimensions to explore the magnetic field dependence of the magnetization relaxation rate and the critical current down to millikelvin temperatures in untwinned single crystals of YBa_2Cu_3O_(7-δ) with columnar defects. The response separates into three regimes as a function of the ratio of vortex density to columnar defect density B/B_φ: enhancements in both critical current and quantum creep in the dilute limit, vanishing magnetization relaxation at the matching density (the proposed "Mott insulator'' phase line), and the emergence of temperature-dependent vortex motion for B≫B_φ

    Stability of undissociated screw dislocations in zinc-blende covalent materials from first principle simulations

    Full text link
    The properties of perfect screw dislocations have been investigated for several zinc-blende materials such as diamond, Si, β\beta-SiC, Ge and GaAs, by performing first principles calculations. For almost all elements, a core configuration belonging to shuffle set planes is favored, in agreement with low temperature experiments. Only for diamond, a glide configuration has the lowest defect energy, thanks to an sp2^2 hybridization in the core

    Local probe of vortex pinning energies in the Bose glass

    Get PDF
    Columnar defects provide strong pinning centers for vortices in high-T_c superconductors, increasing global critical currents. Using a magnetometer array of micron dimensions, we characterize the local held profiles in untwinned single crystals of YBa_2Cu_3O_(7-δ) with equivalent columnar defect densities B_φ. We find that the critical current is large only where the internal magnetic field BB _ φ, the critical current is sharply reduced. We model both local and global critical current measurements by generalizing the Bean picture to the case of irradiated high-T_c superconductors

    Crack Front Waves and the dynamics of a rapidly moving crack

    Full text link
    Crack front waves are localized waves that propagate along the leading edge of a crack. They are generated by the interaction of a crack with a localized material inhomogeneity. We show that front waves are nonlinear entities that transport energy, generate surface structure and lead to localized velocity fluctuations. Their existence locally imparts inertia, which is not incorporated in current theories of fracture, to initially "massless" cracks. This, coupled to crack instabilities, yields both inhomogeneity and scaling behavior within fracture surface structure.Comment: Embedded Latex file including 4 figure
    corecore