7,115 research outputs found

    EEOC v. Henredon Furniture Industries, Inc.

    Get PDF

    Pathways to climate adapted and healthy low income housing

    Get PDF
    AbstractThis report presents the findings from the “Pathways to Climate Adapted and Healthy Low Income Housing” project undertaken by the CSIRO Climate Adaptation Flagship in partnership with two organisations responsible for providing social housing in Australia.The project was based on the premise that interactions between people, housing, and neighbourhood are dynamic and best viewed as a complex, dynamic social-ecological system. Using social housing as a case study, the objectives of the project were to:Model vulnerability of housing and tenants to selected climate change impacts;Identify/evaluate engineering, behavioural and institutional adaptation options;Scope co-benefits of climate adaptation for human health and well-being; andDevelop house typologies and climate analogues for national generalisations.This project was developed with the rationale that a multi-level focus on the cross-scale interactions between housing, residents, neighbourhood, and regional climate was vital for understanding the nature of climate change vulnerability and options for adaptation. The climate change hazards that were explored were increasing temperatures and more frequent and severe heatwaves in the context of heat-related health risks to housing occupants, and changes in radiation, humidity, and wind, in relation to material durability and service life of housing components and the implications for maintenance.Please cite as:Barnett G, Beaty RM, Chen D, McFallan S, Meyers J, Nguyen M, Ren Z, Spinks A, and Wang, X 2013 Pathways to climate adapted and healthy low income housing, National Climate Change Adaptation Research Facility, Gold Coast, pp. 110.This report presents the findings from the \u27Pathways to Climate Adapted and Healthy Low Income Housing\u27 project undertaken by the CSIRO Climate Adaptation Flagship in partnership with two organisations responsible for providing social housing in Australia.The project was based on the premise that interactions between people, housing, and neighbourhood are dynamic and best viewed as a complex, dynamic social-ecological system. Using social housing as a case study, the objectives of the project were to:Model vulnerability of housing and tenants to selected climate change impacts;Identify/evaluate engineering, behavioural and institutional adaptation options;Scope co-benefits of climate adaptation for human health and well-being; andDevelop house typologies and climate analogues for national generalisations.This project was developed with the rationale that a multi-level focus on the cross-scale interactions between housing, residents, neighbourhood, and regional climate was vital for understanding the nature of climate change vulnerability and options for adaptation. The climate change hazards that were explored were increasing temperatures and more frequent and severe heatwaves in the context of heat-related health risks to housing occupants, and changes in radiation, humidity, and wind, in relation to material durability and service life of housing components and the implications for maintenance

    EEOC v. Salisbury Motor Company, Inc.

    Get PDF

    Evaluation of Deschutes River fall chinook salmon

    Get PDF

    Ares I-X Malfunction Turn Range Safety Analysis

    Get PDF
    Ares I-X was the designation given to the flight test version of the Ares I rocket which was developed by NASA (also known as the Crew Launch Vehicle (CLV) component of the Constellation Program). The Ares I-X flight test vehicle achieved a successful flight test on October 28, 2009, from Pad LC-39B at Kennedy Space Center, Florida (KSC). As part of the flight plan approval for the test vehicle, a range safety malfunction turn analysis was performed to support the risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could have caused the vehicle trajectory to deviate from its normal flight path. The effects of these failures were evaluated with an Ares I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version II (POST2) simulation tool. The Ares I-X simulation analysis provided output files containing vehicle trajectory state information. These were used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at KSC, and to develop the vehicle destruct criteria used by the flight test range safety officer in the event of a flight test anomaly of the vehicle. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study

    Travesty of Trust: A Critical Look at Racial and Ethnic Discrimination in the Healthcare Setting

    Get PDF
    The purpose of this thesis is to review the overarching purpose of healthcare, examine race-related disparities in minority patient outcomes within specific fields of medical practice, and discuss whether these disparities are the result of racial discrimination within the clinical setting, or are due at least partially to genetic and environmental factors, followed by an examination of how cross-cultural education for healthcare professionals can be improved to equip medical personnel with the attitudes, knowledge, and skills necessary to provide effective care to a culturally diverse patient populace. The benefits of recruiting a culturally and linguistically diverse team of healthcare providers are also discussed. Review of literature seems to indicate that poor patient outcomes for minority groups are due at least in part to forms of discrimination in healthcare provision, and therefore academic initiatives to implement for current and future medical practitioners in order to address current racial disparities and discrimination in healthcare and improve health outcomes for minority patients are also examined

    Modal Analysis of the Orion Capsule Two Parachute System

    Get PDF
    As discussed in Ref [1], it is apparent from flight tests that the system made up of two main parachutes and a capsule can undergo several distinct dynamical behaviors. The most significant and problematic of these is the pendulum mode in which the system develops a pronounced swinging motion with an amplitude of up to 24 deg. Large excursions away from vertical by the capsule could cause it to strike the ground at a large horizontal or vertical speed and jeopardize the safety of the astronauts during a crewed mission. In reference [1], Ali et al. summarized a series of efforts taken by the Capsule Parachute Assembly System (CPAS) Program to understand and mitigate the pendulum issue. The period of oscillation and location of the system's pivot point are determined from post-flight analysis. Other noticeable but benign modes include: 1) flyout (scissors) mode, where the parachutes move back and forth symmetrically with respect to the vertical axis similar to the motion of a pair of scissors; 2) maypole mode, where the two parachutes circle around the vertical axis at a nearly constant radius and period; and 3) breathing mode, in which deformation of the non-rigid canopies affects the axial acceleration of the system in an oscillatory manner. Because these modes are relatively harm- less, little effort has been devoted to analyzing them in comparison with the pendulum motion. Motions of the actual system made up of two parachutes and a capsule are extremely complicated due to nonlinearities and flexibility effects. Often it is difficult to obtain insight into the fundamental dynamics of the system by examining results from a multi-body simulation based on nonlinear equations of motion (EOMs). As a part of this study, the dynamics of each mode observed during flight is derived from first principles on an individual basis by making numerous simplifications along the way. The intent is to gain a better understanding into the behavior of the complex multi-body system by studying the reduced set of differential equations associated with each mode. This approach is analogous to the traditional modal analysis technique used to study airplane flight dynamics, in which the full nonlinear behavior of the airframe is decomposed into the phugoid and short period modes for the longitudinal dynamics and the spiral, roll-subsidence, and dutch-roll modes for the lateral dynamics. It is important to note that the study does not address the mechanisms that cause the system to transition from one mode to another, nor does it discuss motions during which two or more modes occur simultaneously

    Effects of omega-3 fatty acids on arterial stiffness in patients with hypertension: a randomized pilot study.

    Get PDF
    BackgroundOmega-3 fatty acids prevent cardiovascular disease (CVD) events in patients with myocardial infarction or heart failure. Benefits in patients without overt CVD have not been demonstrated, though most studies did not use treatment doses (3.36 g) of omega-3 fatty acids. Arterial stiffness measured by pulse wave velocity (PWV) predicts CVD events independent of standard risk factors. However, no therapy has been shown to reduce PWV in a blood pressure-independent manner. We assessed the effects of esterified omega-3 fatty acids on PWV and serum markers of inflammation among patients with hypertension.Design and methodsWe performed a prospective, randomized; double-blinded pilot study of omega-3 fatty acids among 62 patients in an urban, safety net hospital. Patients received 3.36 g of omega-3 fatty acids vs. matched placebo daily for 3-months. The principal outcome measure was change in brachial-ankle PWV. Serum inflammatory markers associated with CVD risk were also assessed.ResultsThe majority (71 %) were of Latino ethnicity. After 3-months, mean change in arterial PWV among omega-3 and placebo groups was -97 cm/s vs. -33 cm/s respectively (p = 0.36 for difference, after multivariate adjustment for baseline age, systolic blood pressure, and serum adiponectin). Non-significant reductions in lipoprotein-associated phospholipase A2 (LpPLA2) mass and high sensitivity C-reactive protein (hsCRP) relative to placebo were also observed (p = 0.08, and 0.21, respectively).ConclusionHigh-dose omega-3 fatty acids did not reduce arterial PWV or markers of inflammation among patients within a Latino-predominant population with hypertension.Clinical trial registrationNCT00935766 , registered July 8 2009

    Linear Analysis of a Two-Parachute System Undergoing Pendulum Motion

    Get PDF
    Motion resembling that of a pendulum undergoing large-amplitude oscillation was ob- served during a series of flight tests of an unoccupied Orion Capsule Parachute Assembly System (CPAS) drop-test vehicle. Large excursions away from vertical by the capsule could cause it to strike the ground or ocean at a large angle with respect to vertical, with an undesirable attitude with respect to heading, or with a large horizontal or vertical speed. These conditions are to be avoided because they would endanger the occupants of the capsule in an actual mission. Pendulum motion is intimately related to a parachutes aerodynamic normal force coefficient, which is a nonlinear function of angle of attack. An analytical investigation of the dynamics of pendulum motion is undertaken with the aid of a simplified model of the physical system and the assumption that the normal force coefficient is a linear function of angle of attack in the neighborhood of a value corresponding to stable equilibrium. The analysis leads to a simple relationship for the location of a pivot point, which provides insights that are consistent with previous studies
    corecore