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Introduction:  As discussed in Ref [1], it is apparent 

from flight tests that the system made up of two main 

parachutes and a capsule can undergo several distinct 

dynamical behaviors. The most significant and prob-

lematic of these is the pendulum mode in which the sys-

tem develops a pronounced swinging motion with an 

amplitude of up to 24 deg. Large excursions away from 

vertical by the capsule could cause it to strike the ground 

at a large horizontal or vertical speed and jeopardize the 

safety of the astronauts during a crewed mission. In ref-

erence [1], Ali et al. summarized a series of efforts taken 

by the Capsule Parachute Assembly System (CPAS) 

Program to understand and mitigate the pendulum issue. 

The period of oscillation and location of the system's 

pivot point are determined from post-flight analysis [2].  

Other noticeable but benign modes include: 1) flyout 

(scissors) mode, where the parachutes move back and 

forth symmetrically with respect to the vertical axis sim-

ilar to the motion of a pair of scissors; 2) maypole mode, 

where the two parachutes circle around the vertical axis 

at a nearly constant radius and period; and 3) breathing 

mode, in which deformation of the non-rigid canopies 

affects the axial acceleration of the system in an oscilla-

tory manner. Because these modes are relatively harm-

less, little effort has been devoted to analyzing them in 

comparison with the pendulum motion. 

Motions of the actual system made up of two parachutes 

and a capsule are extremely complicated due to nonlin-

earities and flexibility effects. Often it is difficult to ob-

tain insight into the fundamental dynamics of the system 

by examining results from a multi-body simulation 

based on nonlinear equations of motion (EOMs). As a 

part of this study, the dynamics of each mode observed 

during flight is derived from first principles on an indi-

vidual basis by making numerous simplifications along 

the way. The intent is to gain a better understanding into 

the behavior of the complex multi-body system by stud-

ying the reduced set of differential equations associated 

with each mode. This approach is analogous to the tra-

ditional modal analysis technique used to study airplane 

flight dynamics [3], in which the full nonlinear behavior 

of the airframe is decomposed into the phugoid and 

short period modes for the longitudinal dynamics and 

the spiral, roll-subsidence, and dutch-roll modes for the 

lateral dynamics. It is important to note that the study 

does not address the mechanisms that cause the system 

to transition from one mode to another, nor does it dis-

cuss motions during which two or more modes occur 

simultaneously. 

 

Pendulum Mode:  Over the past 50 years, a number of 

analytical, numerical, and experimental investigations 

have been performed with the goal of understanding 

parachute pitch-plane dynamics (e.g., refs. [4]–[6]). 

Reference [7] used computational fluid dynamics 

(CFD) to study the stability of various main parachute 

configurations from the Apollo and Multi-Purpose 

Crew Vehicle (MPCV) Programs. It was demonstrated 

that an increase in the porosity of the parachute im-

proved its stability characteristics, and hence reduce the 

severity of the pendulum motion. Figure 1 shows repre-

sentative plots of 𝐶𝑁 and 𝐶𝐴 comparing a stable versus 

an unstable main parachute configuration. It is apparent 

from the 𝐶𝑁 versus 𝛼 plot that the unstable configura-

tion has a negative slope at 𝛼 = 0 and two stable equi-

librium points at ±𝛼𝑜. As described in ref. [7], by add-

ing a “gap" in the parachute (increased porosity), the 𝐶𝑁 

slope becomes close to zero at 𝛼 = 0 and is considered 

the stable configuration. In addition, the two stable 𝛼𝑜 

shift closer to 𝛼 = 0. However, this modification comes 

at a cost in the reduction of the 𝐶𝐴, which results in a 

higher descent velocity. References [6] and [8] provide 

similar insights regarding the flow physics associated 

with non-porous and porous configurations and how 

these affect the parachute stability characteristics. The 

current study focuses on the unstable MPCV main par-

achute design (modeled by the red curves in Figure 1), 

which is highly susceptible to the pendulum motion un-

der the two-main cluster configuration. 
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Figure 1.  CN and CA Coefficients Representative of 

Unstable versus Stable Parachute Configurations 

 

The planar dumbbell model used to study the underlying 

dynamics of the pendulum motion is illustrated in Fig-

ure 2. The capsule is modeled as a particle rather than 

an extended rigid body, and aerodynamic forces acting 

on the capsule are ignored [4]. The two parachutes are 

treated as a single particle. The rigid body 𝐵 contains 

two particles. Particle 𝑃𝐶  has a mass of 𝑚𝐶, the total 

mass of two parachutes, which includes dry mass as 

well as the mass of air trapped in each of the canopies. 

Particle 𝑃𝐿  has a mass of 𝑚𝐿 and represents the capsule. 

Body 𝐵 moves such that 𝑃𝐶  and 𝑃𝐿  remain at all times 

in a plane fixed in a Newtonian reference frame 𝑁. A 

right-handed set of mutually perpendicular unit vectors 

𝑛1, 𝑛2, and 𝑛3 is fixed in 𝑁. Unit vectors 𝑛1 and 𝑛3 lie 

in the plane in which motion takes place, and are di-

rected as shown in Figure 2; 𝑛1 is horizontal, 𝑛2 is di-

rected into the page, and 𝑛3 is vertical, directed down-

ward. A right-handed set of mutually perpendicular unit 

vectors 𝑏1, 𝑏2, and 𝑏3 is fixed in 𝐵. Unit vectors 𝑏1 and 

𝑏3 are directed as shown in Figure 2; 𝑏1 has the same 

direction as the position vector 𝐫𝑃𝐶𝑃𝐿 from 𝑃𝐶  to 𝑃𝐿 . 

Unit vector 𝑏2 is directed into the page; note that it is 

fixed in 𝑁 as well as in 𝐵.  

 
Figure 2.  Dumbbell Model for Pendulum Motion 

The following two relationships governing translation 

and rotation of the dumbbell are derived in reference 

[9]: 

 

𝒂𝐵∗𝑁 =
1

𝑚𝐶+𝑚𝐿
{−[𝐴𝑥 sin 𝜃 + 𝐴𝑧 cos 𝜃]𝑛1 +

[𝑊𝐶 + 𝑊𝐿 − 𝐴𝑥 cos 𝜃 + 𝐴𝑧 sin 𝜃]𝑛3}              (1) 

 

�̈� +
1

𝑚𝐶𝐿
[(𝑚𝐶  𝑔 − 𝑊𝐶) sin 𝜃 − 𝐴𝑧] = 0 (2) 

where 𝑊𝐿 = 𝑚𝐿  𝑔 and 𝑔 is the magnitude of the local 

gravitational force per unit of mass. 𝑊𝐶 is the sum of the 

dry weights of the two parachutes; the weight of the air 

trapped in their canopies is ignored because the gravita-

tional force exerted on that air is assumed to be counter-

acted by buoyancy effects from the ambient atmos-

phere. 𝐴𝑥, the magnitude of the resultant of the aerody-

namic axial forces applied to the two parachutes, can be 

expressed as: 

 𝐴𝑥 = 2𝑞∞𝑆ref𝐶𝐴 (3) 

where 𝑞∞ is the dynamic pressure, 𝑆ref is the reference 

area of a single parachute, and 𝐶𝐴 is the drag coefficient 

for a single parachute. The absolute value of 𝐴𝑧 is the 

magnitude of the resultant of the aerodynamic normal 

forces applied to the two parachutes; 𝐴𝑧 can be ex-

pressed as: 

 𝐴𝑧 = −2𝑞∞𝑆ref𝐶𝑁 (4) 

where 𝐶𝑁 is the aerodynamic normal force coefficient 

for a single parachute. As discussed in references [4] 

and [5], 𝐶𝐴 and 𝐶𝑁 are nonlinear functions of 𝛼, the in-

stantaneous angle of attack of the parachute:  

 𝐶𝐴(𝛼) = 𝐶𝐴𝑜
+

1

2
𝐶𝐴𝛼

𝛼0 (
𝛼2

𝛼0
2

− 1) (5) 

 𝐶𝑁(𝛼) =
𝐶𝑁𝛼

2𝛼0
2 (𝛼3 − 𝛼0

2𝛼) (6) 

Here, 𝛼0 is the stable trim angle of attack and 𝐶𝑁𝛼
 is the 

slope of the 𝐶𝑁 curve at 𝛼0. An additional damping term 

𝐶𝑁�̇�
 was added to Eq. (6) to account for unsteady time 

lag effects in the rotational DOF ref. [3] and [11]. 

 

Much insight into the stability of the parachutes can be 

obtained by assuming that 𝐶𝑁 is a linear function of 𝛼 in 

the neighborhood of a stable equilibrium point, 𝛼𝑜. For 

small-amplitude oscillations, the rotational equation of 

motion is found to have the form of the second-order 

linear differential equation governing damped, free vi-

brations, and a general solution of the differential equa-

tion is given. A point on the dumbbell whose trajectory 

is nearly a straight line for undamped, small-amplitude 

oscillations is identified. The distance from this pivot 

point to the capsule is of interest because the capsule 



moves as though that distance is the length of a simple 

pendulum. In the case of a simple pendulum, the length 

of the string between the pivot point and pendulum bob 

determines the distance traveled by the bob on a circular 

arc as the pendulum swings. The length of the string also 

determines the period of oscillations. Analogously, the 

distance from the pivot point to the capsule is an im-

portant parameter in capsule-parachute pendulum mo-

tion. When this distance is minimized, undesirable 

swinging motion of the capsule is also minimized.  

 

When 𝜃 remains small, Eq. (2) can be approximated as  

 

�̈� +
𝑊tot

𝑚𝐶𝐿𝐶𝐴
(𝐶𝑁�̇�

)tot �̇� +
1

𝑚𝐶𝐿
[(𝑚𝐶  𝑔 − 𝑊𝐶) +

𝑊tot

𝐶𝐴
𝐶𝑁𝛼

] 𝜃 = 0                 (7) 

 

This second-order linear differential equation has the 

form  

 

 �̈� + 2𝑏�̇� + 𝜔𝑛
2𝑥 = 0  (8) 

 

which governs damped free vibrations. 𝜔𝑛 is referred to 

as the circular natural frequency, and 𝑏/𝜔𝑛 is the frac-

tion of critical damping, or damping ratio. We define 𝑏 

and 𝜔𝑛
2 as: 

 

 𝑏 =
𝑊tot

2𝑚𝐶𝐿𝐶𝐴

(𝐶𝑁�̇�
)tot (9) 

 

and  

 

𝜔𝑛
2 =

1

𝑚𝐶𝐿
[(𝑚𝐶  𝑔 − 𝑊𝐶) +

𝑊tot

𝐶𝐴
𝐶𝑁𝛼

]        (10) 

 

The general solution of Eq. (7) is then given by  

 

𝜃 = 𝑒−𝑏𝑡[𝐶1 sin ( 𝜔𝑑  𝑡) + 𝐶2 cos ( 𝜔𝑑  𝑡)]      (11) 

 

where the damped natural frequency, 𝜔𝑑, is given by  

 

 𝜔𝑑 = √𝜔𝑛
2 − 𝑏2   (12) 

 

and the constants 𝐶1 and 𝐶2 can be expressed in terms 

of the initial values 𝜃0 = 𝜃(𝑡 = 0) and 𝜃0̇ = �̇�(𝑡 = 0), 

  

 𝐶1 =
1

𝜔𝑑

(𝜃0̇ + 𝑏𝜃0) (13) 

 

 𝐶2 = 𝜃0 (14) 

 

The constants appearing in the fraction on the right-

hand side of Eq. (9) are all positive; therefore, the sign 

of 𝑏 is determined by the sign of (𝐶𝑁�̇�
)tot.  Exponential 

decay in 𝜃 occurs for (𝐶𝑁�̇�
)tot > 0, whereas there is ex-

ponential growth in 𝜃 for (𝐶𝑁�̇�
)tot < 0. In either case, 

the damped frequency 𝜔𝑑 of oscillations in 𝜃 is smaller 

than 𝜔𝑛; consequently, the period of damped oscilla-

tions is larger than that of undamped oscillations. 

 

Solutions of dynamical equations governing planar mo-

tions of the dumbbell reveal the existence of a point 𝑄, 

on the line joining 𝑃𝐿  and 𝑃𝐶 , whose trajectory in 𝑁 is 

very nearly a straight line; from this observation, it can 

be inferred that the magnitude of the acceleration 𝑎𝑄𝑁  

of 𝑄 in 𝑁 is nearly zero. In what follows, we find the 

distance 𝐿𝐿 from 𝑃𝐿  to 𝑄 such that 𝑎𝑄𝑁 ∙ 𝑏3 = 0 for un-

damped oscillations having small amplitude. It is also 

shown that, under the same conditions, 𝑎𝑄𝑁 ∙ 𝑏1 is small 

when the initial values 𝜃0 and 𝜃0̇ are zero and small, re-

spectively. 𝑄 is referred to as the pivot point; the smaller 

the value of 𝐿𝐿 is, the better the landing conditions will 

be for the capsule.  

 

The acceleration 𝑎𝑄𝑁  of 𝑄 in 𝑁 is, with the aid of Eq. 

(1), given by  

 

𝒂𝑄𝑁  = [
(𝑊𝐶+𝑊𝐿) cos 𝜃−𝐴𝑥

𝑚𝐶+𝑚𝐿
+ (𝐿𝐿 − 𝑅𝐿)�̇�2] 𝑏1 +

[
(𝑊𝐶+𝑊𝐿) sin 𝜃+𝐴𝑧

𝑚𝐶+𝑚𝐿
+ (𝐿𝐿 − 𝑅𝐿)�̈�] 𝑏3 (15)  

 

One can determine the value of 𝐿𝐿 such that 𝑎𝑄𝑁 ∙ 𝑏3 =
0 when 𝜃 remains small and oscillations are undamped 

[9]: 

 

𝑎𝑄𝑁 ∙ 𝑏3 =
(𝑊𝐶+𝑊𝐿) sin 𝜃+𝐴𝑧−𝑚𝐶𝐿�̈�

𝑚𝐶+𝑚𝐿
+ 𝐿𝐿�̈� = 0  (16)  

 

In view of Eq. (2) and the fact that 𝑊𝐿 = 𝑚𝐿  𝑔, we have  

 
(𝑊𝐶 + 𝑊𝐿) sin 𝜃 + (𝑚𝐶  𝑔 − 𝑊𝐶) sin 𝜃

𝑚𝐶 + 𝑚𝐿

+ 𝐿𝐿�̈� 

= 𝑔 sin 𝜃 + 𝐿𝐿�̈� = 0  (17) 

 

Thus, after substitution from Eq. (28) of [9] with 

(𝐶𝑁�̇�
)tot = 0,  

 

−𝐿𝐿�̈� =
𝐿𝐿

𝑚𝐶𝐿
[(𝑚𝐶  𝑔 − 𝑊𝐶) sin 𝜃 +

𝑊tot

𝐶𝐴
𝐶𝑁𝛼

𝜃] =

𝑔 sin 𝜃  (18) 

 

When 𝜃 remains small, 𝐿𝐿 can be expressed as  

 

 𝐿𝐿 =
𝑚𝐶  𝑔 𝐶𝐴

(𝑚𝐶  𝑔 − 𝑊𝐶)𝐶𝐴 + 𝑊tot𝐶𝑁𝛼

 𝐿  (19) 

 

It is easily shown that 𝐿𝐿 = 𝑅𝐿 when 𝐶𝐴 = 𝐶𝑁𝛼
, in 

which case 𝑄 is coincident with 𝐵∗. When 𝐶𝑁𝛼
= 0, it 



is evident that 𝐿𝐿 slightly exceeds 𝐿 because the numer-

ator in Eq. (19) becomes the sum of the masses of the 

dry parachutes and entrapped air, whereas the denomi-

nator consists only of the masses of entrapped air.  

 

As the distance 𝐿𝐿 decreases the pivot point moves 

closer to the capsule, which decreases the distance the 

payload travels over a circular path during pendulum 

motion. Equation (19) is a key relationship for a two-

parachute system that substantiates observations made 

in previous studies of pendulum motion; 1) increasing 

the parachute 𝐶𝑁𝛼
 moves the pivot point towards the 

payload and reduces the distance traveled by the capsule 

as it swings; 2) decreasing the parachute drag coeffi-

cient (by increasing its porosity) moves the pivot point 

towards the payload and reduces the distance traveled 

by the capsule as it swings; however, this benefit comes 

at the expense of increasing the steady-state descent 

rate, which may not be desirable; 3) decreasing the pay-

load mass (the largest contributor to 𝑊tot) shifts the 

pivot point towards the parachutes and increases the dis-

tance traveled by the capsule as it swings, and 4) an in-

crease in the atmospheric density increases the mass of 

the air entrapped in the canopy (the larger part of 𝑚𝐶) 

and moves the pivot point towards the parachutes. These 

observations are consistent with conclusions drawn in 

Refs. [4], [6], and [7].  Reference [10] describes the 

global nonlinear behavior of the pendulum motion.  

 

Flyout Mode:  Reference [1] describes the flyout, or 

scissors, motion as two parachutes moving sinusoidally 

away from or toward the vertical axis in a symmetrical 

manner, while the capsule descends at nearly constant 

speed. A simple planar model involving three particles 

is used to study the underlying dynamics of the scissors 

motion, as shown in Figure 3. Particle 𝑃𝐿  has a mass of 

𝑚𝐿 and represents the capsule. The two parachutes are 

treated as identical particles, 𝑃𝐵 and 𝑃𝐶; each has a mass 

of 𝑚𝐶, which includes dry mass as well as the mass of 

air trapped inside the canopy. The system moves such 

that the three particles remain at all times in a plane 

fixed in a Newtonian reference frame 𝑁. A right-handed 

set of mutually perpendicular unit vectors 𝑛1, 𝑛2, and 

𝑛3 is fixed in 𝑁. Unit vectors 𝑛1 and 𝑛3 lie in the plane 

in which motion takes place and are directed as shown 

in Figure 3; 𝑛1 is horizontal, 𝑛2 is directed out of the 

page, and 𝑛3 is vertical, directed downward. 𝑃𝐵 and 𝑃𝐶  

each are connected to 𝑃𝐿  by a massless, rigid link; the 

two links are connected by a revolute joint whose axis 

is parallel to 𝑛2. 𝑃𝐵 and one link are fixed in a reference 

frame 𝐵, whereas 𝑃𝐶  and the other link are fixed in a 

reference frame 𝐶. The orientations of 𝐵 and 𝐶 in 𝑁 are 

described by angles 𝜃1 and 𝜃2, respectively. A dextral 

set of mutually perpendicular unit vectors 𝑏1, 𝑏2, and 𝑏3 

is fixed in 𝐵 and directed as shown in Figure 3; 𝑏2 is 

directed out of the page. A similar set of unit vectors 𝑐1, 

𝑐2, and 𝑐3 is fixed in 𝐶; 𝑐2 is directed into the page. Note 

that 𝑏2 and 𝑐2 are each fixed in the three reference 

frames 𝑁, 𝐵, and 𝐶. The resultant external forces acting 

on 𝑃𝐿 , 𝑃𝐵, and 𝑃𝐶  are denoted by 𝐹𝐿, 𝐹𝐵, and 𝐹𝐶, respec-

tively. 

 

Figure 3. Scissors Mode Planar Model 

 

The equation of motion governing the horizontal speed 

of 𝑃𝐿 , which is not presented, shows that horizontal ac-

celeration of 𝑃𝐿  vanishes under the following condi-

tions: (𝐅𝐿 + 𝐅𝐵 + 𝐅𝐶) ∙ �̂�1 = 0, 𝜃1 = 𝜃2, �̇�1 = �̇�2, and 

�̈�1 = �̈�2.  The latter three conditions simply correspond 

to the symmetric motion of the parachutes that charac-

terizes the scissors behavior under consideration.  In the 

following, all four conditions are assumed to exist, and 

the horizontal speed of 𝑃𝐿  is taken to be constant and 

equal to zero.  In that case, the three-particle system has 

three DOFs in 𝑁, and three motion variables 𝑢1, 𝑢2, and 

𝑢3 are introduced as follows: 𝑢1 is the projection onto 

�̂�3 of the velocity of 𝑃𝐿  in N, 𝑢2 =  𝜃1̇, and 𝑢3 =  𝜃2̇.  

Using Kane’s method [Ref. 12], the equations of motion 

can be written in matrix form as 

 

 

 

 

 

 

 

 

[

𝑚𝐿 + 2𝑚𝐶 𝑚𝐶𝐿 sin 𝜃1 𝑚𝐶𝐿 sin 𝜃2

𝑚𝐶𝐿 sin 𝜃1 𝑚𝐶𝐿2 0

𝑚𝐶𝐿 sin 𝜃2 0 𝑚𝐶𝐿2

] {

�̇�1

�̇�2

�̇�3

}              (20) 

= {

�̂�3 ∙  (𝑭𝐿 + 𝑭𝐵 + 𝑭𝐶) − 𝑚𝐶𝐿(cos 𝜃1 𝑢2
2 + cos 𝜃2 𝑢3

2)

𝐿�̂�1 ∙  𝑭𝐵

𝐿�̂�1 ∙  𝑭𝐶

}  



The mass matrix is symmetric, as expected.  One can, of 

course, divide the second and third equations by 𝐿.  

Symmetric motion of the parachutes occurs when the 

magnitude of the normal force �̂�1 ∙ 𝐅𝐵 applied to 𝑃𝐵 is 

identical to the magnitude of the normal force �̂�1 ∙ 𝐅𝐶 

applied to 𝑃𝐶 , the initial values of 𝜃1 and 𝜃2 are identi-

cal, and the initial values of 𝑢2 and 𝑢3 are identical. 

The contribution of aerodynamic forces to 𝐅𝐿 is ignored, 

and the force can be expressed as 

 𝐅𝐿 = 𝑚𝐿𝑔�̂�3 = 𝑊𝐿�̂�3 (21) 

The resultant external force applied to 𝑃𝐵 is given by 

       𝐅𝐵 = 𝑞∞𝑆ref[−(𝐶𝑁)tot�̂�1 − 𝐶𝐴�̂�3 + 𝑊𝐶�̂�3      (22) 

where 𝑊𝐶 is the dry weight of a single parachute.  The 

weight of the air trapped in the canopy is ignored be-

cause the gravitational force exerted on that air is as-

sumed to be counteracted by buoyancy effects from the 

ambient atmosphere.  The total normal force coefficient, 

(𝐶𝑁)tot, is the sum of the free-stream normal force co-

efficient, (𝐶𝑁)fs, and the normal force coefficient due to 

parachute proximity effects, (𝐶𝑁)prox: 

 (𝐶𝑁)tot = (𝐶𝑁)fs + (𝐶𝑁)prox (23) 

As shown in Figure 3 and Equation (23), (𝐶𝑁)fs is gen-

erally a nonlinear function of 𝛼.  In general, it is also a 

function of �̇�.  For this analysis it is assumed that the 

parachutes are oscillating about some trimmed 𝛼.  Small 

angles are assumed, 𝜃′ ≈ 𝛼′, where 𝜃′ and 𝛼′ are devi-

ations about the trimmed 𝜃 and 𝛼, respectively, and 𝐶𝑁 

varies linearly with 𝛼.  (𝐶𝑁)prox is a function of 𝐷prox, 

the distance between the parachute centers, and 𝑉prox, 

the time derivative of 𝐷prox.  Proximity distance can be 

expressed as 𝐷prox = 2𝐿 sin 𝜃, and its time derivative 

is, thus, 𝑉prox = 2𝐿 cos 𝜃 �̇�.  The derivatives of the nor-

mal force coefficients have a relationship similar to 

Equation (23):  

 (𝐶𝑁𝛼
)tot = (𝐶𝑁𝛼

)fs + (𝐶𝑁𝛼
)prox (24) 

The resultant external force applied to 𝑃𝐶  is given by 

        𝐅𝐶 = 𝑞∞𝑆ref[−(𝐶𝑁)tot�̂�1 − 𝐶𝐴�̂�3] + 𝑊𝐶�̂�3    (25) 

If the dynamic coupling in Equations (20) is ignored 

(valid approximation since the contribution of �̇�1 to �̇�2 

is small), damping is neglected, and 𝜃1 is assumed to 

remain small, then the second of Equations (20) de-

scribes an undamped harmonic oscillation: 

 �̇�2 = �̈�1 ≈
𝑊𝐶 − 𝑞∞𝑆ref(𝐶𝑁𝛼

)tot

𝑚𝐶𝐿
 𝜃1 (26) 

The period associated with the scissors motion, 𝑇, is 

found to be inversely proportional to (𝐶𝑁𝛼
)tot: 

 𝑇 = 2𝜋√
𝑚𝐶𝐿

𝑞∞𝑆ref(𝐶𝑁𝛼
)tot − 𝑊𝐶

 (27) 

(𝐶𝑁𝛼
)tot can be expressed as a function of 𝑇 and key 

system parameters: 

           (𝐶𝑁𝛼
)tot =

1

𝑞∞𝑆ref

(
4𝜋2𝑚𝐶𝐿

𝑇2
+ 𝑊𝐶)      (28) 

 

Maypole Mode:  Maypole motion described in Refer-

ence [1] consists of two parachutes orbiting about the 

vertical axis. A simplified model used to study maypole 

motion is illustrated in Figure 4. The three particles 𝑃𝐿 , 

𝑃𝐵, and 𝑃𝐶  are the same as those described in Fig 3; in 

the present model, however, all three are assumed to be 

fixed in a rigid body 𝐵. A right-handed set of mutually 

perpendicular unit vectors 𝑏1, 𝑏2, and 𝑏3 is fixed in 𝐵 

and directed as shown in Figure 4; 𝑏2 is normal to the 

plane containing 𝑃𝐿 , 𝑃𝐵, and 𝑃𝐶; and 𝑏3 is parallel to an 

axis of symmetry of 𝐵, which is therefore a central prin-

cipal axis of inertia of 𝐵. A dextral set of mutually per-

pendicular unit vectors 𝑛1, 𝑛2, and 𝑛3 is fixed in a New-

tonian reference frame 𝑁. 𝑛1 is horizontal, 𝑛2 is directed 

out of the page, and 𝑛3 is vertical, directed downward. 

𝐵 moves in 𝑁 such that 𝑏3 = 𝑛3 at all times. Moreover, 

the velocity in 𝑁 of every point on the axis of symmetry 

of 𝐵 has the same constant magnitude and the same di-

rection as 𝑛3. Two additional sets of dextral, mutually 

perpendicular unit vectors are introduced for conven-

ience in conducting kinematic analysis and expressing 

the forces applied to 𝐵. Both sets of unit vectors are 

fixed in 𝐵. The first set contains 𝑒1, 𝑒2, and 𝑒2, whereas 

the second set contains 𝑓1, 𝑓2, and 𝑓3. 

 
Figure 4.  Maypole Mode Model 



For example, 𝑃𝐿  lies on the axis of symmetry, so the ve-

locity of 𝑃𝐿  in 𝑁 can be written as 

 𝐯𝑃𝐿𝑁 = 𝑉3�̂�3 (29) 

where 𝑉3 is a constant.  Hence, the acceleration in 𝑁 of 

𝑃𝐿  and every point on the axis of symmetry is zero: 

 𝐚𝑃𝐿𝑁 = 𝟎 (30) 

The mass center of 𝐵, denoted by 𝐵∗, lies on the axis of 

symmetry and, therefore, has an acceleration in 𝑁 equal 

to zero.  Based on first principles, this requires that the 

resultant of all external forces applied to 𝐵 is equal to 

zero.  The angular velocity 𝛚𝐵𝑁  of 𝐵 in 𝑁 that charac-

terizes maypole motion is parallel to a central principal 

axis of inertia of 𝐵, 

 𝛚𝐵𝑁 = Ω�̂�3 = Ω�̂�3 (31) 

where Ω is a constant.  Thus, the angular acceleration 

𝛂𝐵𝑁  of 𝐵 in 𝑁 is zero: 

 𝛂𝐵𝑁 = 𝟎 (32) 

Euler’s rotational equations of motion are satisfied by 

Equations (31) and (32) only if the resultant moment 

about 𝐵 of all external forces applied to 𝐵 is equal to 

zero.  The accelerations in 𝑁 of 𝑃𝐵 and 𝑃𝐶  are then de-

termined to be 

 

         𝐚𝑃𝐵𝑁 = Ω𝐿 sin Φ  Ω�̂�3 × �̂�2 = −𝑅Ω2�̂�1     (33) 

         𝐚𝑃𝐶𝑁 = −Ω𝐿 sin Φ  Ω�̂�3 × �̂�2 = 𝑅Ω2�̂�1      (34) 

where 𝑅 = 𝐿 sin Φ, as indicated in Figure 4. 

Two additional sets of dextral, mutually perpendicular 

unit vectors are introduced for convenience in conduct-

ing kinematic analysis and expressing the forces applied 

to 𝐵.  Both sets of unit vectors are fixed in 𝐵.  The first 

set contains �̂�1, �̂�2, and �̂�3, whereas the second set con-

tains 𝐟1, 𝐟2, and 𝐟3. 

The resultants of the external forces acting on 𝑃𝐿 , 𝑃𝐵, 

and 𝑃𝐶  are once again denoted by 𝐅𝐿, 𝐅𝐵, and 𝐅𝐶 , respec-

tively.  𝐅𝐿 is expressed as 

 𝐅𝐿 = 𝑚𝐿𝑔�̂�3 = 𝑊𝐿�̂�3 (35) 

The resultant external force applied to 𝑃𝐵 is, in general, 

given by 

 
𝐅𝐵 = 𝑞∞𝑆ref[−(𝐶𝑁)tot�̂�1 + 𝐶𝑌�̂�2

− 𝐶𝐴�̂�3] + 𝑊𝐶�̂�3 
(36) 

where 𝑊𝐶 is the dry weight of a single parachute.  

(𝐶𝑁)tot can in this case be expressed as in Equation 

(23).  In addition, it is assumed that Φ = 𝛼 and the par-

achutes are in static equilibrium with constant flyout 

angles and at some trimmed angle of attack 𝛼trim while 

performing the maypole motion.  The resultant exter-

nal force applied to 𝑃𝐶  is similar to 𝐹𝐵: 

 
𝐅𝐶 = 𝑞∞𝑆ref[−(𝐶𝑁)tot𝐟1 + 𝐶𝑌𝐟2

− 𝐶𝐴𝐟3] + 𝑊𝐶�̂�3 
(37) 

However, the side forces associated with 𝐶𝑌 would yield 

a nonzero moment about 𝐵∗ that is parallel to �̂�3.  

Hence, maypole motion requires 

 𝐶𝑌 = 0 (38) 

Because 𝑃𝐿  and 𝑃𝐵 are connected by a rigid link, each 

exerts a force on the other.  The force exerted by 𝑃𝐿  on 

𝑃𝐵 can be expressed as 𝑇�̂�3.  This internal force must be 

accounted for when applying Newton’s second law to 

𝑃𝐵; however, forming dot products with �̂�1 will elimi-

nate 𝑇.  That is, 

 
(𝐅𝐵 + 𝑇�̂�3) ∙ �̂�1 = 𝐅𝐵 ∙ �̂�1

= 𝑚𝐶 𝐚𝑃𝐵𝑁 ∙ �̂�1 
(39) 

Substitution from Equations (33) and (36) yields 

{𝑞∞𝑆ref[−(𝐶𝑁)tot�̂�1 − 𝐶𝐴�̂�3] + 𝑊𝐶𝐧3} ∙ �̂�1 =
                                                      −𝑚𝐶𝑅Ω2 cos Φ      (40) 

This relationship can be solved for (𝐶𝑁)tot: 

            (𝐶𝑁)tot =
𝑚𝐶𝑅𝛺2 cos Φ + 𝑊𝐶 sin Φ

𝑞∞𝑆ref

       (41) 

Thus, the aerodynamic normal force is seen to be di-

rectly proportional to the magnitude of the centripetal 

acceleration of 𝑃𝐵 (or 𝑃𝐶).  One can also conclude that 

the radius and period of the maypole mode is dependent 

on the value of (𝐶𝑁)tot at αtrim.  For a given orbital ra-

dius 𝑅, the orbital angular rate is given by  

     Ω = √
𝑞∞𝑆ref(𝐶𝑁)tot − 𝑊𝐶 sin Φ

𝑚𝐶𝑅 cos Φ
   (41) 

The orbital period of maypole motion is thus seen to be 

inversely proportional to (𝐶𝑁)tot.  Finally, by appealing 

to the fact that the resultant external force applied to 𝐵 

must be 𝟎 for maypole motion to take place, a relation-

ship between (𝐶𝑁)tot and 𝐶𝐴 can be obtained.   

    (𝐶𝑁)tot =
2𝑊𝐶 + 𝑚𝐿𝑔 − 2𝑞∞𝑆ref𝐶𝐴 cos Φ

2𝑞∞𝑆ref sin Φ
      (42) 

 

Breathing Mode:  Parachutes are made using flexible 

materials and are inherently non-rigid objects.  As they 

deform during flight, the projected reference area 𝑆proj 

changes and affects the axial motion of the system.  Ref-

erence [1] describes this axial oscillatory behavior as the 

“breathing mode.”  Flight test data showed that during 

the breathing mode as the canopies contracted from the 



nominal reference area, 𝑉down increased; conversely, as 

the canopies increased from the nominal reference area, 

𝑉down decreased.   

The underlying dynamics of the breathing mode are 

straightforward and can be represented by Equations 

(43) through (45).  The parameter 𝜂 is used to approxi-

mate the deformation of the parachute away from its 

nominal projected area.  The oscillatory deformation be-

havior can be represented by a second-order harmonic 

oscillator.  The natural frequency, 𝜔𝑛, is dependent on 

many parameters (e.g., the parachute material proper-

ties, porosity, natural environments). 

 �̈� + 𝑑�̇� + 𝜔𝑛
2𝜂 = 0 (43) 

The 𝐶𝐴 consists of a baseline term and a term dependent 

on 𝜂: 

 𝐶𝐴 = 𝐶𝐴0
+ 𝐶𝐴𝜂

𝜂 (44) 

The equation of motion in the down direction is 

 

(𝑚𝐿 + 2𝑚𝐶,dry)�̇� = 𝑆ref𝜌𝑤2𝐶𝐴 + 

 (𝑚𝐿 + 2𝑚𝐶,dry)𝑔     (45)   

 

where 𝑚𝐶,dry is the dry mass of the parachutes and w is 

the velocity in the down direction.   

 

Conclusions: The overall motion of a system contain-

ing two parachutes and a capsule is extremely compli-

cated with nonlinearities and flexibility effects. It is usu-

ally difficult to obtain insight into the fundamental dy-

namics of the system by examining results from a multi-

body simulation based on nonlinear equations of mo-

tion. In the current work, the dynamics of the scissors, 

maypole, breathing, and pendulum modes observed dur-

ing various drop tests is studied on an individual basis 

by using a simplified dynamics model for each mode. 

Analysis of the flight data shows that the scissors and 

maypole modes are largely dominated by proximity aer-

odynamics. The separate studies of each mode produce 

compatible results and provide a better understanding of 

the behavior of the complex multi-body system. 
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