210 research outputs found

    Antarctic Surface Reflectivity Measurements from the ANITA-3 and HiCal-1 Experiments

    Get PDF
    The primary science goal of the NASA-sponsored ANITA project is measurement of ultra-high energy neutrinos and cosmic rays, observed via radio-frequency signals resulting from a neutrino- or cosmic ray- interaction with terrestrial matter (atmospheric or ice molecules, e.g.). Accurate inference of the energies of these cosmic rays requires understanding the transmission/reflection of radio wave signals across the ice-air boundary. Satellite-based measurements of Antarctic surface reflectivity, using a co-located transmitter and receiver, have been performed more-or-less continuously for the last few decades. Satellite-based reflectivity surveys, at frequencies ranging from 2--45 GHz and at near-normal incidence, yield generally consistent reflectivity maps across Antarctica. Using the Sun as an RF source, and the ANITA-3 balloon borne radio-frequency antenna array as the RF receiver, we have also measured the surface reflectivity over the interval 200-1000 MHz, at elevation angles of 12-30 degrees, finding agreement with the Fresnel equations within systematic errors. To probe low incidence angles, inaccessible to the Antarctic Solar technique and not probed by previous satellite surveys, a novel experimental approach ("HiCal-1") was devised. Unlike previous measurements, HiCal-ANITA constitute a bi-static transmitter-receiver pair separated by hundreds of kilometers. Data taken with HiCal, between 200--600 MHz shows a significant departure from the Fresnel equations, constant with frequency over that band, with the deficit increasing with obliquity of incidence, which we attribute to the combined effects of possible surface roughness, surface grain effects, radar clutter and/or shadowing of the reflection zone due to Earth curvature effects.Comment: updated to match publication versio

    Dwarf alleles differentially affect barley root traits influencing nitrogen acquisition under low nutrient supply

    Get PDF
    Sustainable food production depends critically on the development of crop genotypes that exhibit high yield under reduced nutrient inputs. Rooting traits have been widely advocated as being able to influence optimal plant performance, while breeding-based improvements in yield of spring barley suggest that this species is a good model crop. To date, however, molecular genetics knowledge has not delivered realistic plant ideotypes, while agronomic trials have been unable to identify superior traits. This study explores an intermediate experimental system in which root traits and their effect on plant performance can be quantified. As a test case, four modern semi-dwarf barley varieties, which possess either the ari-e.GP or the sdw1 dwarf allele, were compared with the long-stemmed old variety Kenia under two levels of nutrient supply. The two semi-dwarf types differed from Kenia, exhibiting smaller stem mass and total plant nitrogen (N), and improved partitioning of mass and N to grain. Amongst the semi-dwarfs, the two ari-e.GP genotypes performed better than the two sdw1 genotypes under standard and reduced nutrient supply, particularly in root mass, root investment efficiency, N acquisition, and remobilization of N and mass to grain. However, lack of between-genotype variation in yield and N use efficiency indicated limited potential for exploiting genetic variation in existing varieties to improve barley performance under reduced nutrient inputs. Experimental approaches to test the expression of desirable root and shoot traits are scrutinized, and the potential evaluated for developing a spring barley ideotype for low nutrient conditions

    Experimental tests of sub-surface reflectors as an explanation for the ANITA anomalous events

    Get PDF
    The balloon-borne ANITA [1] experiment is designed to detect ultra-high energy neutrinos via radio emissions produced by in-ice showers. Although initially purposed for interactions within the Antarctic ice sheet, ANITA also demonstrated the ability to self-trigger on radio emissions from ultra-high energy charged cosmic rays [2] (CR) interacting in the Earth's atmosphere. For showers produced above the Antarctic ice sheet, reflection of the down-coming radio signals at the Antarctic surface should result in a polarity inversion prior to subsequent observation at the ~35–40 km altitude ANITA gondola. Based on data taken during the ANITA-1 and ANITA-3 flights, ANITA published two anomalous instances of upcoming cosmic-rays with measured polarity opposite the remaining sample of ~50 UHECR signals [3, 4]. The steep observed upwards incidence angles (25–30 degrees relative to the horizontal) require non-Standard Model physics if these events are due to in-ice neutrino interactions, as the Standard Model cross-section would otherwise prohibit neutrinos from penetrating the long required chord of Earth. Shoemaker et al. [5] posit that glaciological effects may explain the steep observed anomalous events. We herein consider the scenarios offered by Shoemaker et al. and find them to be disfavored by extant ANITA and HiCal experimental data. We note that the recent report of four additional near-horizon anomalous ANITA-4 events [6], at >3σ significance, are incompatible with their model, which requires significant signal transmission into the ice

    Beyond aggression: Androgen-receptor blockade modulates social interaction in wild meerkats

    Get PDF
    In male vertebrates, androgens are inextricably linked to reproduction, social dominance, and aggression, often at the cost of paternal investment or prosociality. Testosterone is invoked to explain rank-related reproductive differences, but its role within a status class, particularly among subordinates, is underappreciated. Recent evidence, especially for monogamous and cooperatively breeding species, suggests broader androgenic mediation of adult social interaction. We explored the actions of androgens in subordinate, male members of a cooperatively breeding species, the meerkat (Suricata suricatta). Although male meerkats show no rank-related testosterone differences, subordinate helpers rarely reproduce. We blocked androgen receptors, in the field, by treating subordinate males with the antiandrogen, flutamide. We monitored androgen concentrations (via baseline serum and time-sequential fecal sampling) and recorded behavior within their groups (via focal observation). Relative to controls, flutamide-treated animals initiated less and received more high-intensity aggression (biting, threatening, feeding competition), engaged in more prosocial behavior (social sniffing, grooming, huddling), and less frequently initiated play or assumed a ‘dominant’ role during play, revealing significant androgenic effects across a broad range of social behavior. By contrast, guarding or vigilance and measures of olfactory and vocal communication in subordinate males appeared unaffected by flutamide treatment. Thus, androgens in male meerkat helpers are aligned with the traditional trade-off between promoting reproductive and aggressive behavior at a cost to affiliation. Our findings, based on rare endocrine manipulation in wild mammals, show a more pervasive role for androgens in adult social behavior than is often recognized, with possible relevance for understanding tradeoffs in cooperative systems

    Experimental tests of sub-surface reflectors as an explanation for the ANITA anomalous events

    Full text link
    The balloon-borne ANITA experiment is designed to detect ultra-high energy neutrinos via radio emissions produced by an in-ice shower. Although initially purposed for interactions within the Antarctic ice sheet, ANITA also demonstrated the ability to self-trigger on radio emissions from ultra-high energy charged cosmic rays interacting in the Earth's atmosphere. For showers produced above the Antarctic ice sheet, reflection of the down-coming radio signals at the Antarctic surface should result in a polarity inversion prior to subsequent observation at the \sim35-40 km altitude ANITA gondola. ANITA has published two anomalous instances of upcoming cosmic-rays with measured polarity opposite the remaining sample of \sim50 UHECR signals. The steep observed upwards incidence angles (25--30 degrees relative to the horizontal) require non-Standard Model physics if these events are due to in-ice neutrino interactions, as the Standard Model cross-section would otherwise prohibit neutrinos from penetrating the long required chord of Earth. Shoemaker et al. posit that glaciological effects may explain the steep observed anomalous events. We herein consider the scenarios offered by Shoemaker et al. and find them to be disfavored by extant ANITA and HiCal experimental data. We note that the recent report of four additional near-horizon anomalous ANITA-4 events, at >3σ>3\sigma significance, are incompatible with their model, which requires significant signal transmission into the ice

    Mapping Exoplanets

    Full text link
    The varied surfaces and atmospheres of planets make them interesting places to live, explore, and study from afar. Unfortunately, the great distance to exoplanets makes it impossible to resolve their disk with current or near-term technology. It is still possible, however, to deduce spatial inhomogeneities in exoplanets provided that different regions are visible at different times---this can be due to rotation, orbital motion, and occultations by a star, planet, or moon. Astronomers have so far constructed maps of thermal emission and albedo for short period giant planets. These maps constrain atmospheric dynamics and cloud patterns in exotic atmospheres. In the future, exo-cartography could yield surface maps of terrestrial planets, hinting at the geophysical and geochemical processes that shape them.Comment: Updated chapter for Handbook of Exoplanets, eds. Deeg & Belmonte. 17 pages, including 6 figures and 4 pages of reference
    corecore