119 research outputs found

    Toward a Harmonization for Using in situ Nutrient Sensors in the Marine Environment

    Get PDF
    Improvedcomparabilityofnutrientconcentrationsinseawaterisrequiredtoenhancethe quality and utility of measurements reported to global databases. Significant progress has been made over recent decades in improving the analysis and data quality for traditional laboratory measurements of nutrients. Similar efforts are required to establish high-quality data outputs from in situ nutrient sensors, which are rapidly becoming integral components of ocean observing systems. This paper suggests using the good practices routine established for laboratory reference methods to propose a harmonized setofdeploymentprotocolsandofqualitycontrolproceduresfornutrientmeasurements obtained from in situ sensors. These procedures are intended to establish a framework to standardize the technical and analytical controls carried out on the three main types of in situ nutrient sensors currently available (wet chemical analyzers, ultraviolet optical sensors, electrochemical sensors) for their deployments on all kinds of platform. The routine reference controls that can be applied to the sensors are listed for each step of sensor use: initial qualification under controlled conditions in the laboratory, preparation of the sensor before deployment, field deployment and finally the sensor recovery. The fundamental principles applied to the laboratory reference method are then reviewed in termsofthecalibrationprotocol,instrumentalinterferences,environmentalinterferences, external controls, and method performance assessment. Data corrections (linearity, sensitivity, drifts, interferences and outliers) are finally identified along with the concepts and calculations for qualification for both real time and time delayed data. This paper emphasizes the necessity of future collaborations between research groups, referenceaccredited laboratories, and technology developers, to maintain comparability of the concentrationsreportedforthevariousnutrientparametersmeasuredbyinsitusensors

    Patients with treated indolent lymphomas immunized with BNT162b2 have reduced anti-spike neutralizing IgG to SARS-CoV-2 variants, but preserved antigen-specific T cell responses

    Get PDF
    Patients with indolent lymphoma undertaking recurrent or continuous B cell suppression are at risk of severe COVID-19. Patients and healthy controls (HC; N = 13) received two doses of BNT162b2: follicular lymphoma (FL; N = 35) who were treatment naïve (TN; N = 11) or received immunochemotherapy (ICT; N = 23) and Waldenström's macroglobulinemia (WM; N = 37) including TN (N = 9), ICT (N = 14), or treated with Bruton's tyrosine kinase inhibitors (BTKi; N = 12). Anti-spike immunoglobulin G (IgG) was determined by a high-sensitivity flow-cytometric assay, in addition to live-virus neutralization. Antigen-specific T cells were identified by coexpression of CD69/CD137 and CD25/CD134 on T cells. A subgroup (N = 29) were assessed for third mRNA vaccine response, including omicron neutralization. One month after second BNT162b2, median anti-spike IgG mean fluorescence intensity (MFI) in FL ICT patients (9977) was 25-fold lower than TN (245 898) and HC (228 255, p =.0002 for both). Anti-spike IgG correlated with lymphocyte count (r =.63; p =.002), and time from treatment (r =.56; p =.007), on univariate analysis, but only with lymphocyte count on multivariate analysis (p =.03). In the WM cohort, median anti-spike IgG MFI in BTKi patients (39 039) was reduced compared to TN (220 645, p =.0008) and HC (p <.0001). Anti-spike IgG correlated with neutralization of the delta variant (r =.62, p <.0001). Median neutralization titer for WM BTKi (0) was lower than HC (40, p <.0001) for early-clade and delta. All cohorts had functional T cell responses. Median anti-spike IgG decreased 4-fold from second to third dose (p =.004). Only 5 of 29 poor initial responders assessed after third vaccination demonstrated seroconversion and improvement in neutralization activity, including to the omicron variant

    Evaluating the health and economic impact of osteoarthritis pain in the workforce: results from the National Health and Wellness Survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There has been increasing recognition that osteoarthritis (OA) affects younger individuals who are still participants in the workforce, but there are only limited data on the contribution of OA pain to work productivity and other outcomes in an employed population. This study evaluated the impact of OA pain on healthcare resource utilization, productivity and costs in employed individuals.</p> <p>Methods</p> <p>Data were derived from the 2009 National Health and Wellness Survey. Univariable and multivariable analyses were used to characterize employed individuals (full-time, part-time, or self-employed) ≥20 years of age who were diagnosed with OA and had arthritis pain in the past month relative to employed individuals not diagnosed with OA or not experiencing arthritis pain in the past month. Work productivity was assessed using the Work Productivity and Activity Impairment (WPAI) questionnaire; health status was assessed using the physical (PCS) and mental component summary (MCS) scores from the SF-12v2 Health Survey and SF-6D health utilities; and healthcare utilization was evaluated by type and number of resources within the past 6 months. Direct and indirect costs were estimated and compared between the two cohorts.</p> <p>Results</p> <p>Individuals with OA pain were less likely to be employed. Relative to workers without OA pain (n = 37,599), the OA pain cohort (n = 2,173) was significantly older (mean age 52.1 ± 11.5 years vs 41.4 ± 13.2 years; <it>P </it>< 0.0001) and with a greater proportion of females (58.2% vs 45.9%; <it>P </it>< 0.0001). OA pain resulted in greater work impairment than among workers without OA pain (34.4% versus 17.8%; <it>P </it>< 0.0001), and was primarily due to presenteeism (impaired activity while at work). Health status, assessed both by the SF-12v2 and the SF-6D was significantly poorer among workers with OA pain (<it>P </it>< 0.0001), and healthcare resource utilization was significantly higher (<it>P </it>< 0.0001) than workers without OA pain. Total costs were higher in the OA pain cohort (15,047versus15,047 versus 8,175; <it>P </it>< 0.0001), driven by indirect costs that accounted for approximately 75% of total costs.</p> <p>Conclusions</p> <p>A substantial proportion of workers suffer from OA pain. After controlling for confounders, the impact of OA pain was significant, resulting in lower productivity and higher costs.</p
    corecore