15 research outputs found
Effects of heat waves and light deprivation on giant kelp juveniles (Macrocystis pyrifera, Laminariales, Paeophyceae
Due to climate change, the incidence of marine heat waves (MHWs) has increased, yet their effects on seaweeds are still not well understood. Adult sporophytes of Macrocystis pyrifera, the species forming the iconic giant kelp forests, can be negatively affected by thermal stress and associated environmental factors (e.g., nutrient depletion, light deprivation); however, little is known about the tolerance/vulnerability of juvenile sporophytes. Simultaneously to MHWs, juveniles can be subjected to light limitation for extended periods of time (daysâweeks) due to factors causing turbidity, or even because of shading by understory canopyforming seaweeds. This study evaluated the effects of a simulated MHW (24°C, 7 d) in combination (or not) with light deprivation, on the
hotosynthetic capacities, nutrient uptake, and tissue composition, as well as oxidative stress descriptors of M. pyrifera juvenile sporophytes (single blade stage, up to 20 cm
length). Maximum quantum yield (Fv/Fm) decreased in juveniles under light at 24°C, likely reflecting some damage on the photosynthetic apparatus or dynamic photoinhibition; however, no other sign of physiological alteration was found in this treatment (i.e., pigments, nutrient reserves and uptake, oxidative stress). Photosynthetic capacities were maintained or even enhanced in plants under light deprivation, likely supported by photoacclimation (pigments increment); by contrast, nitrate uptake and
internal storage of carbohydrates were strongly reduced, regardless of temperature. This study indicated that light limitation can be more detrimental to juvenile survival, and therefore recruitment success of M. pyrifera forests, than episodic thermal stress from MHWs.En prensa2,23
A review of the opportunities and challenges for using remote sensing for management of surface-canopy forming kelps
© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cavanaugh, K. C., Bell, T., Costa, M., Eddy, N. E., Gendall, L., Gleason, M. G., Hessing-Lewis, M., Martone, R., McPherson, M., Pontier, O., Reshitnyk, L., Beas-Luna, R., Carr, M., Caselle, J. E., Cavanaugh, K. C., Miller, R. F., Hamilton, S., Heady, W. N., Hirsh, H. K., Hohman R., Lee L. C., Lorda J., Ray J., Reed D. C., Saccomanno V. R., Schroeder, S. B. A review of the opportunities and challenges for using remote sensing for management of surface-canopy forming kelps. Frontiers in Marine Science, 8, (2021): 753531, https://doi.org/10.3389/fmars.2021.753531.Surface-canopy forming kelps provide the foundation for ecosystems that are ecologically, culturally, and economically important. However, these kelp forests are naturally dynamic systems that are also threatened by a range of global and local pressures. As a result, there is a need for tools that enable managers to reliably track changes in their distribution, abundance, and health in a timely manner. Remote sensing data availability has increased dramatically in recent years and this data represents a valuable tool for monitoring surface-canopy forming kelps. However, the choice of remote sensing data and analytic approach must be properly matched to management objectives and tailored to the physical and biological characteristics of the region of interest. This review identifies remote sensing datasets and analyses best suited to address different management needs and environmental settings using case studies from the west coast of North America. We highlight the importance of integrating different datasets and approaches to facilitate comparisons across regions and promote coordination of management strategies.Funding was provided by the Nature Conservancy (Grant No. 02042019-5719), the U.S. National Science Foundation (Grant No. OCE 1831937), and the U.S. Department of Energy ARPA-E (Grant No. DE-AR0000922)
Gastropods and bivalves of commercial interest from the continental shelf of Jalisco and Colima, MĂ©xico
The distribution and abundance with respect to depth and type of substratum of 20 species of gastropods and four species of bivalves of economic importance were examined in the continental shelf of Jalisco and Colima, MĂ©xico. These species were taken with net trawls at depths from 24 to 83 m in August, 1988. Most individuals and species of gastropods were collected in stations with sandy silt substratum. Bivalves were collected in sandy silt and medium sand substrata. The six most abundant species represented 81.2 % of all gastropods and bivalves collected. These species are: Cantharus pallidus, Fusinus dupetittouarsi, Ficus ventricosa, Hexaplex brassica, Harpa conoidalis and Arca pacifica
The value of ecosystem services in global marine kelp forests
While marine kelp forests have provided valuable ecosystem services for millennia, the global ecological and economic value of those services is largely unresolved. Kelp forests are diminishing in many regions worldwide, and efforts to manage these ecosystems are hindered without accurate estimates of the value of the services that kelp forests provide to human societies. Here, we present a global estimate of the ecological and economic potential of three key ecosystem services - fisheries production, nutrient cycling, and carbon removal provided by six major forest forming kelp genera (Ecklonia, Laminaria, Lessonia, Macrocystis, Nereocystis, and Saccharina). Each of these genera creates a potential value of between 147,100/hectare each year. Collectively, they generate between 562 billion/year worldwide, with an average of 29,900, 904 Kg/Ha/year) and nitrogen removal ($73,800, 657 Kg N/Ha/year), though kelp forests are also estimated to sequester 4.91 megatons of carbon from the atmosphere/year highlighting their potential as blue carbon systems for climate change mitigation. These findings highlight the ecological and economic value of kelp forests to society and will facilitate better informed marine management and conservation decisions
Recommended from our members
Integrating climate adaptation and transboundary management: Guidelines for designing climate-smart marine protected areas
Climate change poses an urgent threat to biodiversity that demands societal responses. The magnitude of this challenge is reflected in recent international commitments to protect 30% of the planet by 2030 while adapting to climate change. However, because climate change is global, interventions must transcend political boundaries. Here, using the California Bight as a case study, we provide 21 biophysical guidelines for designing climate-smart transboundary marine protected area (MPA) networks and conduct analyses to inform their application. We found that future climates and marine heatwaves could decrease ecological connectivity by 50% and hinder the recovery of vulnerable species in MPAs. To buffer the impacts of climate change, MPA coverage should be expanded, focusing on protecting critical nodes for the network and climate refugia, where impacts might be less severe. For shared ecoregions, these actions require international coordination. Our work provides the first comprehensive framework for integrating climate resilience for MPAs in transboundary ecoregions, which will support other nationsâ aspirations. © 2023 The AuthorsOpen access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]