77 research outputs found

    Persistence of Yersinia pestis in Soil Under Natural Conditions

    Get PDF
    As part of a fatal human plague case investigation, we showed that the plague bacterium, Yersinia pestis, can survive for at least 24 days in contaminated soil under natural conditions. These results have implications for defining plague foci, persistence, transmission, and bioremediation after a natural or intentional exposure to Y. pestis

    Crop Updates 2007 - Farming Systems

    Get PDF
    This session covers forty papers from different authors: 1. Quality Assurance and industry stewardship, David Jeffries, Better Farm IQ Manager, Cooperative Bulk Handling 2. Sothis: Trifolium dasyurum (Eastern Star clover), A. Loi, B.J. Nutt and C.K. Revell, Department of Agriculture and Food 3. Poor performing patches of the paddock – to ameliorate or live with low yield? Yvette Oliver1, Michael Robertson1, Bill Bowden2, Kit Leake3and Ashley Bonser3, CSIRO Sustainable Ecosystems1, Department of Food and Agriculture2, Kellerberrin Farmer3 4. What evidence is there that PA can pay? Michael Robertson, CSIRO Floreat, Ian Maling, SilverFox Solutions and Bindi Isbister, Department of Agriculture and Food 5.The journey is great, but does PA pay? Garren Knell, ConsultAg; Alison Slade, Department of Agriculture and Food, CFIG 6. 2007 Seasonal outlook, David Stephens and Michael Meuleners, Department of Agriculture and Food 7. Towards building farmer capacity to better manage climate risk, David Beard and Nicolyn Short, Department of Agriculture and Food 8. A NAR farmers view of his farming system in 2015, Rob Grima, Department of Agriculture and Food 9. Biofuels opportunities in Australia, Ingrid Richardson, Food and Agribusiness Research, Rabobank 10. The groundwater depth on the hydrological benefits of lucerne and the subsequent recharge values, Ruhi Ferdowsian1and Geoff Bee2; 1Department of Agriculture and Food, 2Landholder, Laurinya, Jerramungup 11. Subsoil constraints to crop production in the high rainfall zone of Western Australia, Daniel Evans1, Bob Gilkes1, Senthold Asseng2and Jim Dixon3; 1University of Western Australia, 2CSIRO Plant Industry, 3Department of Agriculture and Food 12. Prospects for lucerne in the WA wheatbelt, Michael Robertson, CSIRO Floreat, Felicity Byrne and Mike Ewing, CRC for Plant-Based Management of Dryland Salinity, Dennis van Gool, Department of Agriculture and Food 13. Nitrous oxide emissions from a cropped soil in the Western Australian grainbelt, Louise Barton1, Ralf Kiese2, David Gatter3, Klaus Butterbach-Bahl2, Renee Buck1, Christoph Hinz1and Daniel Murphy1,1School of Earth and Geographical Sciences, The University of Western Australia, 2Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Garmisch-Partenkirchen, Germany, 3The Department of Agriculture and Food 14. Managing seasonal risk is an important part of farm management but is highly complex and therefore needs a ‘horses for courses’ approach, Cameron Weeks, Planfarm / Mingenew-Irwin Group, Dr Michael Robertson, Dr Yvette Oliver, CSIRO Sustainable Ecosystems and Dr Meredith Fairbanks, Department of Agriculture and Food 15. Novel use application of clopyralid in lupins, John Peirce, and Brad Rayner Department of Agriculture and Food 16. Long season wheat on the South Coast – Feed and grain in a dry year – a 2006 case study, Sandy White, Department of Agriculture and Food 17. Wheat yield response to potassium and the residual value of PKS fertiliser drilled at different depths, Paul Damon1, Bill Bowden2, Qifu Ma1 and Zed Rengel1; Faculty of Natural and Agricultural Sciences, The University of Western Australia1, Department of Agriculture and Food2 18. Saltbush as a sponge for summer rain, Ed Barrett-Lennard and Meir Altman, Department of Agriculture and Food and CRC for Plant-based Management of Dryland Salinity 19. Building strong working relationships between grower groups and their industry partners, Tracey M. Gianatti, Grower Group Alliance 20. To graze or not to graze – the question of tactical grazing of cereal crops, Lindsay Bell and Michael Robertson, CSIRO Sustainable Ecosystems 21. Can legume pastures and sheep replace lupins? Ben Webb and Caroline Peek, Department of Agriculture and Food 22. EverGraze – livestock and perennial pasture performance during a drought year, Paul Sanford, Department of Agriculture and Food, and CRC for Plant-based Management of Dryland Salinity 23. Crop survival in challenging times, Paul Blackwell1, Glen Riethmuller1, Darshan Sharma1and Mike Collins21Department of Agriculture and Food, 2Okura Plantations, Kirikiri New Zealand 24. Soil health constraints to production potential – a precision guided project, Frank D’Emden, and David Hall, Department of Agriculture and Food 25. A review of pest and disease occurrence in 2006, Mangano, G.P. and Severtson, D.L., Department of Agriculture and Food 26. e-weed – an information resource on seasonal weed management issues, Vanessa Stewart and Julie Roche, Department of Agriculture and Food 27. Review of Pesticide Legislation and Policies in Western Australia, Peter Rutherford, BSc (Agric.), Pesticide Legislation Review, Office of the Chief Medical Adviser, WA Department of Health 28. Future wheat yields in the West Australian wheatbelt, Imma FarrĂ© and Ian Foster, Department of Agriculture and Food, Stephen Charles, CSIRO Land and Water 29. Organic matter in WA arable soils: What’s active and what’s not, Frances Hoyle, Department of Agriculture and Food, Australia and Daniel Murphy, UWA 30. Soil quality indicators in Western Australian farming systems, D.V. Murphy1, N. Milton1, M. Osman1, F.C. Hoyle2, L.K Abbott1, W.R. Cookson1and S. Darmawanto1; 1UWA, 2Department of Agriculture and Food 31. Impact of stubble on input efficiencies, Geoff Anderson, formerly employed by Department of Agriculture and Food 32. Mixed farming vs All crop – true profit, not just gross margins, Rob Sands and David McCarthy, FARMANCO Management Consultants, Western Australia 33. Evaluation of Local Farmer Group Network – group leaders’ surveys 2005 and 2006, Paul Carmody, Local Farmer Group Network, Network Coordinator, UWA 34. Seeding rate and nitrogen application and timing effects in wheat, J. Russell, Department of Agriculture and Food, J. Eyres, G. Fosbery and A. Roe, ConsultAg, Northam 35. Foliar fungicide application and disease control in barley, J. Russell, Department of Agriculture and Food, J. Eyres, G. Fosbery and A. Roe, ConsultAg, Northam 36. Brown manuring effects on a following wheat crop in the central wheatbelt, , J. Russell, Department of Agriculture and Food, J. Eyres, G. Fosbery and A. Roe, ConsultAg, Northam 37. Management of annual pastures in mixed farming systems – transition from a dry season, Dr Clinton Revell and Dr Phil Nichols; Department of Agriculture and Food 38. The value of new annual pastures in mixed farm businesses of the wheatbelt, Dr Clinton Revell1, Mr Andrew Bathgate2and Dr Phil Nichols1; 1Department of Agriculture and Food, 2Farming Systems Analysis Service, Albany 39. The influence of winter SOI and Indian Ocean SST on WA winter rainfall, Meredith Fairbanks and Ian Foster, Department of Agriculture and Food 40. Market outlook – Grains, Anne Wilkins, Market Analyst, Grains, Department of Agriculture and Foo

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    • 

    corecore