488 research outputs found

    Crinoids Varied in Color at Le Grand, Iowa (Abstract)

    Get PDF
    In the Le Grand quarries there is an unusual occurrence of multicolored crinoids. Some of these crinoids are almost black, some are almost white, some are dark brown, some are light brown and some are cream colored. Each species is found always to have the same color. One familiar with the fossils can classify them accurately by the color. Platycrinus symmetricus is a dark brown. Diochrinus inornatus is a chocolate brown and Rhodocrinus kirbyi is almost black. Most of the inadunate species are white. One species with unusual coloring is Rhodocrinus watersianus with a mottled brown calyx and light colored arems

    Perturbative Effective Theory in an Oscillator Basis?

    Full text link
    The effective interaction/operator problem in nuclear physics is believed to be highly nonperturbative, requiring extended high-momentum spaces for accurate solution. We trace this to difficulties that arise at both short and long distances when the included space is defined in terms of a basis of harmonic oscillator Slater determinants. We show, in the simplest case of the deuteron, that both difficulties can be circumvented, yielding highly perturbative results in the potential even for modest (~6hw) included spaces.Comment: 10 pages, 4 figure

    Chiral Dynamics of Low-Energy Kaon-Baryon Interactions with Explicit Resonance

    Get PDF
    The processes involving low energy KˉN\bar{K}N and YπY\pi interactions (where Y=ΣY= \Sigma or Λ\Lambda) are studied in the framework of heavy baryon chiral perturbation theory with the Λ\Lambda(1405) resonance appearing as an independent field. The leading and next-to-leading terms in the chiral expansion are taken into account. We show that an approach which explicitly includes the Λ\Lambda(1405) resonance as an elementary quantum field gives reasonable descriptions of both the threshold branching ratios and the energy dependence of total cross sections.Comment: 16 pages, 6 figure

    Three particles in a finite volume: The breakdown of spherical symmetry

    Full text link
    Lattice simulations of light nuclei necessarily take place in finite volumes, thus affecting their infrared properties. These effects can be addressed in a model-independent manner using Effective Field Theories. We study the model case of three identical bosons (mass m) with resonant two-body interactions in a cubic box with periodic boundary conditions, which can also be generalized to the three-nucleon system in a straightforward manner. Our results allow for the removal of finite volume effects from lattice results as well as the determination of infinite volume scattering parameters from the volume dependence of the spectrum. We study the volume dependence of several states below the break-up threshold, spanning one order of magnitude in the binding energy in the infinite volume, for box side lengths L between the two-body scattering length a and L = 0.25a. For example, a state with a three-body energy of -3/(ma^2) in the infinite volume has been shifted to -10/(ma^2) at L = a. Special emphasis is put on the consequences of the breakdown of spherical symmetry and several ways to perturbatively treat the ensuing partial wave admixtures. We find their contributions to be on the sub-percent level compared to the strong volume dependence of the S-wave component. For shallow bound states, we find a transition to boson-diboson scattering behavior when decreasing the size of the finite volume.Comment: 21 pages, 4 figures, 2 table

    Present Constraints on the H-dibaryon at the Physical Point from Lattice QCD

    Full text link
    The current constraints from lattice QCD on the existence of the H-dibaryon are discussed. With only two significant lattice QCD calculations of the H-dibaryon binding energy at approximately the same lattice spacing, the forms of the chiral and continuum extrapolations to the physical point are not determined. In this brief report, we consider the constraints on the H-dibaryon imposed by two simple chiral extrapolations. In both instances, the extrapolation to the physical pion mass allows for a bound H-dibaryon or a near-threshold scattering state. Further lattice QCD calculations are required to clarify this situation.Comment: 8 pages, 2 figures, 1 table; revised for the journa

    The Long and Short of Nuclear Effective Field Theory Expansions

    Get PDF
    Nonperturbative effective field theory calculations for NN scattering seem to break down at rather low momenta. By examining several toy models, we clarify how effective field theory expansions can in general be used to properly separate long- and short-range effects. We find that one-pion exchange has a large effect on the scattering phase shift near poles in the amplitude, but otherwise can be treated perturbatively. Analysis of a toy model that reproduces 1S0 NN scattering data rather well suggests that failures of effective field theories for momenta above the pion mass can be due to short-range physics rather than the treatment of pion exchange. We discuss the implications this has for extending the applicability of effective field theories.Comment: 22 pages, 9 figures, references corrected, minor modification

    Interplay of gravitation and linear superposition of different mass eigenstates

    Get PDF
    The interplay of gravitation and the quantum-mechanical principle of linear superposition induces a new set of neutrino oscillation phases. These ensure that the flavor-oscillation clocks, inherent in the phenomenon of neutrino oscillations, redshift precisely as required by Einstein's theory of gravitation. The physical observability of these phases in the context of the solar neutrino anomaly, type-II supernovae, and certain atomic systems is briefly discussed

    Lattice Simulations for Light Nuclei: Chiral Effective Field Theory at Leading Order

    Get PDF
    We discuss lattice simulations of light nuclei at leading order in chiral effective field theory. Using lattice pion fields and auxiliary fields, we include the physics of instantaneous one-pion exchange and the leading-order S-wave contact interactions. We also consider higher-derivative contact interactions which adjust the S-wave scattering amplitude at higher momenta. By construction our lattice path integral is positive definite in the limit of exact Wigner SU(4) symmetry for any even number of nucleons. This SU(4) positivity and the approximate SU(4) symmetry of the low-energy interactions play an important role in suppressing sign and phase oscillations in Monte Carlo simulations. We assess the computational scaling of the lattice algorithm for light nuclei with up to eight nucleons and analyze in detail calculations of the deuteron, triton, and helium-4.Comment: 44 pages, 15 figure
    • …
    corecore