9 research outputs found

    Stabilisation of β-Catenin Downstream of T Cell Receptor Signalling

    Get PDF
    The role of TCF/β-catenin signalling in T cell development is well established, but important roles in mature T cells have only recently come to light.Here we have investigated the signalling pathways that are involved in the regulation of β-catenin in primary human T cells. We demonstrate that β-catenin expression is upregulated rapidly after T cell receptor (TCR) stimulation and that this involves protein stabilisation rather than an increase in mRNA levels. Similar to events in Wnt signalling, the increase in β-catenin coincides with an inhibition of GSK3, the kinase that is required for β-catenin degradation. β-catenin stabilisation in T cells can also be induced by the activation of PKC with phorbol esters and is blocked by inhibitors of phosphatidylinositol 3-kinase (PI3K) and phospholipase C (PKC). Upon TCR signalling, β-catenin accumulates in the nucleus and, parallel to this, the ratio of TCF1 isoforms is shifted in favour of the longer β-catenin binding isoforms. However, phosphorylated β-catenin, which is believed to be inactive, can also be detected and the expression of Wnt target genes Axin2 and dickkopf is down regulated.These data show that in mature human T cells, TCR signalling via PI3K and PKC can result in the stabilisation of β-catenin, allowing β-catenin to migrate to the nucleus. They further highlight important differences between β-catenin activities in TCR and Wnt signalling

    Sporophytic ovule tissues modulate the initiation and progression of apomixis in Hieracium

    Get PDF
    Apomixis in Hieracium subgenus Pilosella initiates in ovules when sporophytic cells termed aposporous initial (AI) cells enlarge near sexual cells undergoing meiosis. AI cells displace the sexual structures and divide by mitosis to form unreduced embryo sac(s) without meiosis (apomeiosis) that initiate fertilization-independent embryo and endosperm development. In some Hieracium subgenus Pilosella species, these events are controlled by the dominant LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) loci. In H. praealtum and H. piloselloides, which both contain the same core LOA locus, the timing and frequency of AI cell formation is altered in derived mutants exhibiting abnormal funiculus growth and in transgenic plants expressing rolB which alters cellular sensitivity to auxin. The impact on apomictic and sexual reproduction was examined here when a chimeric RNAse gene was targeted to the funiculus and basal portions of the ovule, and also when polar auxin transport was inhibited during ovule development following N-1-naphthylphthalamic acid (NPA) application. Both treatments led to ovule deformity in the funiculus and distal parts of the ovule and LOA-dependent alterations in the timing, position, and frequency of AI cell formation. In the case of NPA treatment, this correlated with increased expression of DR5:GFP in the ovule, which marks the accumulation of the plant hormone auxin. Our results show that sporophytic information potentiated by funiculus growth and polar auxin transport influences ovule development, the initiation of apomixis, and the progression of embryo sac development in Hieracium. Signals associated with ovule pattern formation and auxin distribution or perception may influence the capacity of sporophytic ovule cells to respond to LOA.Matthew R. Tucker, Takashi Okada, Susan D. Johnson, Fumio Takaiwa, and Anna M. G. Koltuno

    ACOUSTIC META-STRUCTURE TRANSMISSION LOSS CHARACTERIZATION VIA AN IMPEDANCE TUBE AND THE TRANSFER MATRIX APPROACH

    No full text
    This paper proposes a new meta-structure bandgap depth measurement method that considers energy absorption rather than discrete structural response. By applying measurement techniques previously reserved for acoustic property characterization, this novel method aims to characterize acoustic metastructures by their transmission loss (TL). Transmission loss is the ratio of incident energy to transmitted energy from a structure. One extensively defined testing method for determining acoustic transmission loss involves using an impedance tube or a tube outfitted with transducers flush to its inside wall on either side of a sample holder, along with a source and termination on either end of the tube. Using the transfer matrix approach and transfer functions computed from the impedance tube transducers, the pressure and particle velocity at one point in space and time can be related to that of another point in space and time. In the end, a transfer matrix can be determined, which contains information about how much energy is absorbed, reflected, and transmitted by a structure over an entire range of frequencies. By outfitting an impedance tube to accept acoustic meta-structure samples, this same method can determine the transmission loss versus frequency exhibited by such a structure. This information can be used to directly observe and measure the band gap depth of an acoustic meta-structure

    A Amazônia no imaginário norte-americano em tempo de guerra

    No full text
    corecore