46 research outputs found
Differential Modulation of TCF/LEF-1 Activity by the Soluble LRP6-ICD
The canonical Wnt/β-catenin (Wnt) pathway is a master transcriptional regulatory signaling pathway that controls numerous biological processes including proliferation and differentiation. As such, transcriptional activity of the Wnt pathway is tightly regulated and/or modulated by numerous proteins at the level of the membrane, cytosol and/or nucleus. In the nucleus, transcription of Wnt target genes by TCF/LEF-1 is repressed by the long Groucho/TLE co-repressor family. However, a truncated member of the Groucho/TLE family, amino terminal enhancer of Split (AES) can positively modulate TCF/LEF-1 activity by antagonizing long Groucho/TLE members in a dominant negative manner. We have previously shown the soluble intracellular domain of the LRP6 receptor, a receptor required for activation of the Wnt pathway, can positively regulate transcriptional activity within the Wnt pathway. In the current study, we show the soluble LRP6 intracellular domain (LRP6-ICD) can also translocate to the nucleus in CHO and HEK 293T cells and in contrast to cytosolic LRP6-ICD; nuclear LRP6-ICD represses TCF/LEF-1 activity. In agreement with previous reports, we show AES enhances TCF/LEF-1 mediated reporter transcription and further we demonstrate that AES activity is spatially regulated in HEK 293T cells. LRP6-ICD interacts with AES exclusively in the nucleus and represses AES mediated TCF/LEF-1 reporter transcription. These results suggest that LRP6-ICD can differentially modulate Wnt pathway transcriptional activity depending upon its subcellular localization and differential protein-protein interactions
Upregulation of the Wnt Co-Receptor LRP6 Promotes Hepatocarcinogenesis and Enhances Cell Invasion
Background: Activation of the Wnt/b-catenin signaling pathway plays a crucial role in hepatocellular carcinoma (HCC). Lowdensity lipoprotein (LDL) receptor-related protein-6 (LRP6) is one of the co-receptors of the Wnt/b-catenin pathway and forms a signaling complex with Wnt ligand and Frizzled receptor to activate downstream signaling. However, the role of LRP6 in hepatocarcinogenesis is unclear. In this study, we examined its expression and roles in human HCC. Methodology/Principal Findings: Using real-time quantitative RT-PCR, we found that LRP6 was frequently (45%) overexpressed in human HCCs (P = 0.003). In vitro studies showed that ectopic expression of LRP6 increased the protein level of b-catenin. Moreover, overexpression of the full-length and constitutively active LRP6, respectively, activated the WNT/b-catenin signaling pathway, as shown by the TCF/b-catenin reporter assay. With regard to the effects of LRP6 overexpression in HCC cells, stable overexpression of the constitutively active LRP6 in BEL-7402 HCC cells enhanced cell proliferation, cell migration, and invasion in vitro as well as tumorigenicity in nude mice. Conclusions/Significance: Our findings indicate that overexpression of LRP6 contributes to the hyperactivation of the Wnt
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
Transcriptome 3′end organization by PCF11 links alternative polyadenylation to formation and neuronal differentiation of neuroblastoma
In gene regulation, diversification at the transcriptome 3′end is linked to differentiation and dedifferentiation. Here, the authors discover extensive transcriptome 3′end-alterations in neuroblastoma, regulated by PCF11, and provide an interactive data repository of transcriptome-wide alternative polyadenylation
Analiza konkurenčnosti v farmacevtski panogi: primer podjetja Alkaloid in konkurentov
Benzotriazole surrogates showing higher stabilities than the corresponding chlorophosphates, allow phosphonylation of a variety of N-, O-, and S-nucleophiles in good yields
Oriented Covalent Organic Framework Film Synthesis from Azomethine Compounds
Abstract Strategies enabling solution processing of covalent organic framework (COF) thin films will become increasingly important as these versatile materials are integrated into a wide range of electronic and optical devices. This work highlights an approach to yield thin film synthesis of TAPA‐PDA (TAPA: tris(4‐aminophenyl)amine, PDA: terephthalaldehyde) and TAPB‐PDA (TAPB: 1,3,5‐tris(4‐aminophenyl)benzene) imine COFs using azomethine compounds which can be drop cast onto a variety of substrates. High crystalline COF films are shown to form on various electronically‐relevant substrates. Grazing incidence wide angle X‐ray scattering characterization reveals COF films with a preferred horizontal orientation in the case of TAPA‐PDA COF and a more mixed/vertical orientation in the TAPB‐PDA COF film regardless of the substrate. As this exciting class of crystalline organic materials becomes more relevant for various device applications, solution processing techniques will be vital to take advantage of the properties of thin film COFs