21 research outputs found

    Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis

    Get PDF
    AbstractThe differentiation of floor plate cells and motor neurons can be induced by Sonic hedgehog (SHH), a secreted signaling protein that undergoes autoproteolytic cleavage to generate amino- and carboxy-terminal products. We have found that both floor plate cells and motor neurons are induced by the aminoterminal cleavage product of SHH (SHH-N). The threshold concentration of SHH-N required for motor neuron induction is about 5-fold lower than that required for floor plate induction. Higher concentrations of SHH-N can induce floor plate cells at the expense of motor neuron differentiation. Our results suggest that the induction of floor plate cells and motor neurons by the notochord in vivo is mediated by exposure of neural plate cells to different concentrations of the amino-terminal product of SHH autoproteolytic cleavage

    Stromal Gli2 activity coordinates a niche signaling program for mammary epithelial stem cells

    Get PDF
    The stem cell niche is a complex local signaling microenvironment that sustains stem cell activity during organ maintenance and regeneration. The mammary gland niche must support its associated stem cells while also responding to systemic hormonal regulation that triggers pubertal changes. We find that Gli2, the major Hedgehog pathway transcriptional effector, acts within mouse mammary stromal cells to direct a hormoneresponsive niche signaling program by activating expression of factors that regulate epithelial stem cells as well as receptors for the mammatrophic hormones estrogen and growth hormone.Whereas prior studies implicate stem cell defects in human disease, this work shows that niche dysfunction may also cause disease, with possible relevance for human disorders and in particular the breast growth pathogenesis associated with combined pituitary hormone deficiency. Copyright 2016 by the American Association for the Advancement of Science, all rights reserved.116Ysciescopu

    Control of inflammation by stromal Hedgehog pathway activation restrains colitis

    Get PDF
    Inflammation disrupts tissue architecture and function, thereby contributing to the pathogenesis of diverse diseases; the signals that promote or restrict tissue inflammation thus represent potential targets for therapeutic intervention. Here, we report that genetic or pharmacologic Hedgehog pathway inhibition intensifies colon inflammation (colitis) in mice. Conversely, genetic augmentation of Hedgehog response and systemic small-molecule Hedgehog pathway activation potently ameliorate colitis and restrain initiation and progression of colitis-induced adenocarcinoma. Within the colon, the Hedgehog protein signal does not act directly on the epithelium itself, but on underlying stromal cells to induce expression of IL-10, an immune-modulatory cytokine long known to suppress inflammatory intestinal damage. IL-10 function is required for the full protective effect of small-molecule Hedgehog pathway activation in colitis; this pharmacologic augmentation of Hedgehog pathway activity and stromal IL-10 expression are associated with increased presence of CD4(+) Foxp3(+) regulatory T cells. We thus identify stromal cells as cellular coordinators of colon inflammation and suggest their pharmacologic manipulation as a potential means to treat colitis.11138Ysciescopu

    Radically rethinking agriculture for the 21st century. Perspective

    No full text
    Population growth, arable land and fresh water limits, and climate change have profound implications for the ability of agriculture to meet this century's demands for food, feed, fiber, and fuel while reducing the environmental impact of their production. Success depends on the acceptance and use of contemporary molecular techniques, as well as the increasing development of farming systems that use saline water and integrate nutrient flows
    corecore