28 research outputs found

    Results from a Large, Multinational Sample Using the Childhood Trauma Questionnaire

    Get PDF
    Childhood maltreatment has diverse, lifelong impact on morbidity and mortality. The Childhood Trauma Questionnaire (CTQ) is one of the most commonly used scales to assess and quantify these experiences and their impact. Curiously, despite very widespread use of the CTQ, scores on its Minimization-Denial (MD) subscale—originally designed to assess a positive response bias—are rarely reported. Hence, little is known about this measure. If response biases are either common or consequential, current practices of ignoring the MD scale deserve revision. Therewith, we designed a study to investigate 3 aspects of minimization, as defined by the CTQ’s MD scale: 1) its prevalence; 2) its latent structure; and finally 3) whether minimization moderates the CTQ’s discriminative validity in terms of distinguishing between psychiatric patients and community volunteers. Archival, item-level CTQ data from 24 multinational samples were combined for a total of 19,652 participants. Analyses indicated: 1) minimization is common; 2) minimization functions as a continuous construct; and 3) high MD scores attenuate the ability of the CTQ to distinguish between psychiatric patients and community volunteers. Overall, results suggest that a minimizing response bias—as detected by the MD subscale—has a small but significant moderating effect on the CTQ’s discriminative validity. Results also may suggest that some prior analyses of maltreatment rates or the effects of early maltreatment that have used the CTQ may have underestimated its incidence and impact. We caution researchers and clinicians about the widespread practice of using the CTQ without the MD or collecting MD data but failing to assess and control for its effects on outcomes or dependent variables

    Blood Microbiome Quantity and the Hyperdynamic Circulation in Decompensated Cirrhotic Patients.

    No full text
    BACKGROUND:Recently, a complex microbiome was comprehensibly characterized in the serum and ascitic fluid of cirrhotic patients. In the current study, we investigated for the first time the induction of inflammatory pathways and Nitric Oxide, as well as the systemic hemodynamics in conjunction with the blood microbiome in a Child-Pugh class B cirrhotic cohort. METHODS AND FINDINGS:We used the Intestinal Infections Microbial DNA qPCR Array to screen for 53 bacterial DNA from the gut in the blood. Assays were designed using the 16S rRNA gene as a target, and PCR amplification primers (based on the Human Microbiome Project) and hydrolysis-probe detection. Eighteen systemic hemodynamic parameters were measured non-invasively by impedance cardiography using the BioZ ICG monitor. The inflammatory response was assessed by measuring blood cytokines, Nitric Oxide RNA arrays, and Nitric Oxide. In the blood of this cirrhotic cohort, we detected 19 of 53 bacterial species tested. The number of bacterial species was markedly increased in the blood of cirrhotic patients compared to control individuals (0.2+/-0.4 vs 3.1+/-2.3; 95% CI: 1.3 to 4.9; P = 0.0030). The total bacterial DNA was also increased in the blood of cirrhotic subjects compared to control subjects (0.2+/- 1.1 vs 41.8+/-132.1; 95% CI: 6.0 to 77.2; P = 0.0022). In the cirrhotic cohort, the Cardiac Output increased by 37% and the Systemic Vascular Resistance decreased by 40% (P< 0.00001 for both compared to control subjects). Systemic Vascular Resistance was inversely correlated to blood bacterial DNA quantity (- 0.621; 95% CI -0.843 to -0.218; P = 0.0060), blood bacterial species number (- 0.593; 95% CI -0.83 to -0.175; P = 0.0095; logistic regression: Chi Square = 5.8877; P = 0.0152), and serum Nitric Oxide (- 0.705; 95% CI -0.881 to -0.355; P = 0.0011). Many members of the Nitric Oxide signaling pathway gene family were increased in cirrhotic subjects. CONCLUSIONS:Our study identified blood bacterial DNA in ~ 90% of the cirrhotic patients without clinical evidences of infection, and suggests that the quantity of bacterial DNA in blood may stimulate signaling pathways, including Nitric Oxide, that could decrease systemic vascular resistance and increase cardiac output

    Increased Nitric Oxide in the blood of cirrhotic subjects.

    No full text
    <p>Nitric oxide was increased in the blood of cirrhotic subjects compared to control subjects. The P value is indicated using a two-tailed Mann-Whitney U test.</p

    The bacterial DNA phylum, class, and order detected in the blood of cirrhotic subjects.

    No full text
    <p>Four phyla were detected in the blood of cirrhotic patients: Firmicutes, Protobacteria, Bacteroides and Verrucomicrobia. In this cirrhotic cohort we detected 19 of 53 bacteria species tested (Positive/Tested).</p

    Subjects’ hemodynamic parameters.

    No full text
    <p>The subjects’ systemic hemodynamic parameters are shown for the control and cirrhotic cohorts. The P values and the 95% CI are indicated for each comparison using a two-tailed Mann-Whitney U test.</p
    corecore