1,030 research outputs found

    Extending the dynamic range of nuclear pulse spectrometers

    Get PDF
    Using an innovative time-varying front-end electronics in conjunction with a bulky coaxial high-purity germanium detector, we were able to extend the range of the radionuclide spectra well beyond the analog to digital converter (ADC) saturation point. The electronics automatically conditions the signal for digital-filtering optimization if it is in the ADC voltage range and for time-over-threshold analysis if it exceeds the ADC range. A high spectroscopic resolution has been achieved in both operation ranges. An unprecedented wide energy range from 5 keV to 150 MeV of equivalent energy, or 90 dB, has been obtained using a single acquisition chain, while maintaining a high-energy resolution in the whole spectrum. For example, with an ADC range of 3 MeV a resolution has been obtained of 1.3/2.2 keV full width at half maximum on the 122/1332 keV gamma-ray lines of Co-57 and Co-60, and of <0.4% in the time-over-threshold region, or for energy deposits beyond 3 MeV. (C) 2008 American Institute of Physics

    Co-existing structures in 105Ru

    Full text link
    New positive-parity states, having a band-like structure, were observed in 105Ru. The nucleus was produced in induced fission reaction and the prompt gamma-rays, emitted from the fragments, were detected by the EUROBALL III multi-detector array. The partial scheme of excited 105Ru levels is analyzed within the Triaxial-Rotor-plus-Particle approach

    A dipole band in 124 Xe

    Get PDF
    High-spin states in 124Xe were populated by means of the 110Pd(18O,4n) reaction. In-beam γ rays were measured using the GASP spectrometer. A dipole band, similar to those previously found in other nuclei of this mass region, was identified in 124Xe

    πNN\pi NN coupling determined beyond the chiral limit

    Get PDF
    Within the conventional QCD sum rules, we calculate the πNN\pi NN coupling constant, gπNg_{\pi N}, beyond the chiral limit using two-point correlation function with a pion. We consider the Dirac structure, iγ5i\gamma_5, at mπ2m_\pi^2 order, which has clear dependence on the PS and PV coupling schemes for the pion-nucleon interactions. For a consistent treatment of the sum rule, we include the linear terms in quark mass as they constitute the same chiral order as mπ2m_\pi^2. Using the PS coupling scheme for the pion-nucleon interaction, we obtain gπN=13.3±1.2g_{\pi N}=13.3\pm 1.2, which is very close to the empirical πNN\pi NN coupling. This demonstrates that going beyond the chiral limit is crucial in determining the coupling and the pseudoscalar coupling scheme is preferable from the QCD point of view.Comment: 8 pages, revtex, some errors are corrected, substantially revise

    AGATA, Technical Proposal for an Advanced Gamma Tracking Array for the European Gamma Spectroscopy Community

    Get PDF
    International audienceAn Advanced GAmma-ray Tracking Array, AGATA, is proposed for high-resolution γ-ray spectroscopy with exotic beams. AGATA will employ highly segmented Ge detectors as well as fully digital electronics and relies on newly developed pulse-shape analysis and tracking methods. The array is being designed in a way that it provides optimal properties for nuclear structure experiments in a wide range of beam velocities (from stopped to v/c ≈ 50%), almost independent of beam quality and background conditions. Selectivity and sensitivity of AGATA will be superior to any existing γ-array by several orders of magnitude. Hence, it will be for a long time a rich source for nuclear structure physics providing the means for new discoveries and opening challenging new perspectives. This document is the initial proposal sent to the European Commission to obtain the necessary funds for the project

    Reduction in the uncertainty of the neutron-capture cross section of 210Bi: Impact of a precise multipolarity measurement of the 2− → 1− main ground-state transition

    Get PDF
    International audience; The mixing ratio of the main 320-keV, M1 + E2 ground-state γ transition in 210Bi has been more precisely quantified, allowing a significant reduction in the uncertainty of measurements of the neutron-capture cross section to the ground state of 210Bi from 25% to 0.9%. Accurate values for neutron-capture cross sections to both the ground and long-lived 9− isomeric state at 271 keV in 210Bi are of particular importance as Pb-Bi finds increased usage in Accelerator Driven Systems

    Transition probabilities in the X(5) candidate 122^{122}Ba

    Full text link
    To investigate the possible X(5) character of 122Ba, suggested by the ground state band energy pattern, the lifetimes of the lowest yrast states of 122Ba have been measured, via the Recoil Distance Doppler-Shift method. The relevant levels have been populated by using the 108Cd(16O,2n)122Ba and the 112Sn(13C,3n)122Ba reactions. The B(E2) values deduced in the present work are compared to the predictions of the X(5) model and to calculations performed in the framework of the IBA-1 and IBA-2 models

    Tilted axis rotation, candidates for chiral bands, and wobbling motion in 138Nd

    No full text
    High-spin states in 138Nd were investigated using the reaction 94Zr(48Ca,4n), detecting coincident γ rays with the gasp spectrometer. A rich level scheme was constructed including four bands of negative parity at low spins, eight bands of dipole transitions, and eight bands of quadrupole transitions at medium spins. The cranked shell model and the tilted-axis cranking model are used to assign configurations to the observed bands, where zero pairing is assumed. For selected configurations the case of finite pairing is also considered. A consistent notation for configuration assignment that applies for both zero and finite pairing is introduced. The observed bands are interpreted as rotation around the short and long principal axes (quadrupole bands), as well as around a tilted axis (dipole bands). The dipole bands have an intermediate character, between magnetic and collective electric rotation. A pair of dipole bands is identified as candidates for chiral partners. The possible existence of the wobbling mode at low deformation and medium spins is discussed. The consistent interpretation of the multitude of observed bands strongly supports the existence of stable triaxial deformation at medium spins in 138Nd. ©2012 American Physical Societ

    Band termination in the N=Z Odd-Odd Nucleus 46V

    Full text link
    High spin states in the odd-odd N=Z nucleus 46V have been identified. At low spin, the T=1 isobaric analogue states of 46Ti are established up to I = 6+. Other high spin states, including the band terminating state, are tentatively assigned to the same T=1 band. The T=0 band built on the low-lying 3+ isomer is observed up to the 1f7/2-shell termination at I=15. Both signatures of a negative parity T=0 band are observed up to the terminating states at I = 16- and I = 17-, respectively. The structure of this band is interpreted as a particle-hole excitation from the 1d3/2 shell. Spherical shell model calculations are found to be in excellent agreement with the experimental results.Comment: 5 pages, 4 figure
    corecore