16 research outputs found

    Electronic structure of β-RbSm(MoO4)(2) and chemical bonding in molybdates

    Get PDF
    Microcrystals of orthorhombic rubidium samarium molybdate, β-RbSm(MoO4)2, have been fabricated by solid state synthesis at T = 450 °C, 70 h, and at T = 600 °C, 150 h. The crystal structure has been refined by the Rietveld method in space group Pbcn with cell parameters a = 5.0984(2), b = 18.9742(6) and c = 8.0449(3) Å (RB = 1.72%). Thermal properties of β-RbSm(MoO4)2 were traced by DSC over the temperature range of T = 20–965 °C, and the earlier reported β ↔ α phase transition at T ∼ 860–910 °C was not verified. The electronic structure of β-RbSm(MoO4)2 was studied by employing theoretical calculations and X-ray photoelectron spectroscopy. It has been established that the O 2p-like states contribute mainly to the upper part of the valence band and occupy the valence band maximum, whereas the Mo 4d-like states contribute mainly to the lower part of the valence band. Chemical bonding effects have been analysed from the element core level binding energy data. In addition, it was found that the luminescence spectrum of β-RbSm(MoO4)2 is rather peculiar among the Sm3+ containing materials. The optical refractive index dispersion in β-RbSm(MoO4)2 was also predicted by the first-principles calculations

    Exploration of structural, thermal, vibrational and spectroscopic properties of new noncentrosymmetric double borate Rb3NdB6O12

    Get PDF
    New noncentrosymmetric rare earth borate Rb3NdB6O12 is found in the ternary system Rb2O–Nd2O3–B2O3. The Rb3NdB6O12 powder was fabricated by solid state synthesis at 1050 K for 72 h and the crystal structure was obtained by the Rietveld method. Rb3NdB6O12 crystallized in space group R32 with unit cell parameters a = 13.5236(4), c = 31.162(1) Å, Z = 3. From DSC measurements, the reversible phase transition (I type) in Rb3NdB6O12 is observed at 852–936 K. The 200 μm thick tablet is transparent over the spectral range of 0.3–6.5 μm and the band gap is found as Eg ∼ 6.29 eV. Nonlinear optical response of Rb3NdB6O12 tested via SHG is estimated to be higher than that of K3YB6O12. Blue shift of Nd luminescent lines is found in comparison with other borates. The vibrational parameters of Rb3NdB6O12 are evaluated by experimental methods

    Electronic structure of β-RbNd(MoO4)2 by XPS and XES

    No full text
    β-RbNd(MoO4)2 microplates have been prepared by the multistage solid state synthesis method. The phase composition and micromorphology of the final product have been evaluated by XRD and SEM methods. The electronic structure of β-RbNd(MoO4)2 molybdate has been studied employing the X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES). For the molybdate, the XPS core-level and valence-band spectra, as well as XES bands representing energy distribution of the Mo 4d- and O 2p-like states, have been measured. It has been established that the O 2p-like states contribute mainly to the upper portion of the valence band with also significant contributions throughout the whole valence-band region. The Mo 4d-like states contribute mainly to a lower valence band portion

    Electronic structure of β-RbNd(MoO4)2 by XPS and XES

    No full text
    β-RbNd(MoO4)2 microplates have been prepared by the multistage solid state synthesis method. The phase composition and micromorphology of the final product have been evaluated by XRD and SEM methods. The electronic structure of β-RbNd(MoO4)2 molybdate has been studied employing the X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES). For the molybdate, the XPS core-level and valence-band spectra, as well as XES bands representing energy distribution of the Mo 4d- and O 2p-like states, have been measured. It has been established that the O 2p-like states contribute mainly to the upper portion of the valence band with also significant contributions throughout the whole valence-band region. The Mo 4d-like states contribute mainly to a lower valence band portion

    Exploration of structural, vibrational and spectroscopic properties of self-activated orthorhombic double molybdate RbEu(MoO4)2 with isolated MoO4 units

    Get PDF
    RbEu(MoO4)2 is synthesized by the two-step solid state reaction method. The crystal structure of RbEu(MoO4)2 is defined by Rietveld analysis in space group Pbcn with cell parameters a=5.13502(5), b=18.8581(2) and c=8.12849(7) Å, V=787.13(1) Å3, Z=4 (RB=0.86%). This molybdate possesses its phase transition at 817 K and melts at 1250K. The Raman spectra were measured with the excitation at =1064 and 514.5nm. The photoluminescence spectrum is evaluated under the excitation at 514.5nm. The absolute domination of hypersensitive 5D0→7F2 transition is observed. The ultranarrow 5D0→7F0 transition in RbEu(MoO4)2 is positioned at 580.2nm being 0.2nm blue shifted, with respect to that in Eu2(MoO4)3

    Structural, Spectroscopic, Electric and Magnetic Properties of New Trigonal K<sub>5</sub>FeHf(MoO<sub>4</sub>)<sub>6</sub> Orthomolybdate

    No full text
    A new multicationic structurally disordered K5FeHf(MoO4)6 crystal belonging to the molybdate family is synthesized by the two-stage solid state reaction method. The characterization of the electronic and vibrational properties of the K5FeHf(MoO4)6 was performed using density functional theory calculations, group theory, Raman and infrared spectroscopy. The vibrational spectra are dominated by vibrations of the MoO4 tetrahedra, while the lattice modes are observed in a low-wavenumber part of the spectra. The experimental gap in the phonon spectra between 450 and 700 cm−1 is in a good agreement with the simulated phonon density of the states. K5FeHf(MoO4)6 is a paramagnetic down to 4.2 K. The negative Curie–Weiss temperature of −6.7 K indicates dominant antiferromagnetic interactions in the compound. The direct and indirect optical bandgaps of K5FeHf(MoO4)6 are 2.97 and 3.21 eV, respectively. The K5FeHf(MoO4)6 bandgap narrowing, with respect to the variety of known molybdates and the ab initio calculations, is explained by the presence of Mott-Hubbard optical excitation in the system of Fe3+ ions

    Exploration of the electronic structure of monoclinic α-Eu2(MoO4)3: DFT-based study and X-ray photoelectron spectroscopy

    No full text
    The powder α-Eu2(MoO4)3 sample was prepared by the solid-state reaction method. The phase purity of the final powder product was verified by X-ray diffraction analysis. The constituent element core levels and valence band are measured by X-ray photoelectron spectroscopy as a function of Ar+ ion (2.5 keV, 7–8 μA/cm2) bombardment time. The formation of Mo5+ and Mo4+ states at high bombardment times was detected. The Eu–O and Mo–O bonding was considered in comparison with other Eu3+- and Mo6+-containing oxides using binding energy difference parameters. The transparency range obtained for the pure α-Eu2(MoO4)3 tablet is λ = 0.41–0.97 μm, as estimated at the transmission level of 5%. The short-wavelength cut edge in α-Eu2(MoO4)3 is governed by the direct allowed optical transitions within the band gap of Eg = 3.74 eV (300 K). The band structure of α-Eu2(MoO4)3 was calculated by ab initio methods and strongly different results were obtained for the spin up/down configurations. The Eu-4f states are located around 2.2 eV and −4.0 eV for spin up (↑) and the structures situated at around 6.5 and 5.5 eV for spin down (↓) configuration. The calculated spin magnetic moments are in excellent relation to the Slater-Pauling rule and within the Eu sphere the magnetic moment of 4f electrons is ∼5.99 μB

    Exploration of the electronic structure of monoclinic α-Eu2(MoO4)3: DFT-based study and X-ray photoelectron spectroscopy

    No full text
    The powder α-Eu2(MoO4)3 sample was prepared by the solid-state reaction method. The phase purity of the final powder product was verified by X-ray diffraction analysis. The constituent element core levels and valence band are measured by X-ray photoelectron spectroscopy as a function of Ar+ ion (2.5 keV, 7–8 μA/cm2) bombardment time. The formation of Mo5+ and Mo4+ states at high bombardment times was detected. The Eu–O and Mo–O bonding was considered in comparison with other Eu3+- and Mo6+-containing oxides using binding energy difference parameters. The transparency range obtained for the pure α-Eu2(MoO4)3 tablet is λ = 0.41–0.97 μm, as estimated at the transmission level of 5%. The short-wavelength cut edge in α-Eu2(MoO4)3 is governed by the direct allowed optical transitions within the band gap of Eg = 3.74 eV (300 K). The band structure of α-Eu2(MoO4)3 was calculated by ab initio methods and strongly different results were obtained for the spin up/down configurations. The Eu-4f states are located around 2.2 eV and −4.0 eV for spin up (↑) and the structures situated at around 6.5 and 5.5 eV for spin down (↓) configuration. The calculated spin magnetic moments are in excellent relation to the Slater-Pauling rule and within the Eu sphere the magnetic moment of 4f electrons is ∼5.99 μB
    corecore