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Abstract 

RbEu(MoO4)2 is synthesized by the two-step solid state reaction method. The crystal structure of 

RbEu(MoO4)2 is defined by Rietveld analysis in space group Pbcn with cell parameters 

a=5.13502(5), b=18.8581(2) and c=8.12849(7) Å, V=787.13(1) Å3, Z=4 (RB=0.86%). This 

molybdate possesses its phase transition at 817 K and melts at 1250K. The Raman spectra were 

measured with the excitation at =1064 and 514.5nm. The photoluminescence spectrum is 

evaluated under the excitation at 514.5nm. The absolute domination of hypersensitive 5D0→
7F2 

transition is observed. The ultranarrow 5D0→
7F0 transition in RbEu(MoO4)2 is positioned at 

580.2nm being 0.2nm blue shifted, with respect to that in Eu2(MoO4)3. 
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1. Introduction 

In modern photonics, the crystals containing europium ions are of particular interest because of 

the efficient red emission provided by Eu3+ ions under the short-wavelength excitation and this 

property is extremely needed for the WLED devices and other optical systems [1-5]. By now, a lot 

of different Eu3+-doped phosphors with a complex structure have been proposed and their 

spectroscopic properties have been evaluated [6-12]. However, in the solid solutions, the Eu3+ 

doping level is commonly low to avoid the concentration-quenching effects and, respectively, the 

crystallographic positions of Eu3+ ions may be not evident. In this case, it is difficult to exhibit in 

detail the correlations between the photoluminescence parameters and crystallographic environment 

of Eu3+ ions. To solve the problem, the europium compounds can be considered because, in this 

case, the Eu3+ ion positions can be precisely determined by the methods of crystal structure analysis 

[13-20].  

In the present study, new binary molybdate RbEu(MoO4)2 is considered for the first time. 

Available information on the existence and structural properties of molybdates with general 

composition RbLn(MoO4)2 is very limited [21]. Recently, RbNd(MoO4)2 and RbSm(MoO4)2 

molybdates have been synthesized, their structures have been defined in space group Pbcn and 

electronic structures have been calculated [20-25]. The set of heavier Ln elements, where the 

formation of orthorhombic structure is possible, remains unclear because, to our best knowledge, 

only RbYb(MoO4)2 and RbLu(MoO4)2 were considered earlier and monoclinic, and trigonal 

symmetries, respectively, were reported for the compounds [26,27]. Thus, the present work is aimed 

at the evaluation of structural and spectroscopic characteristics of RbEu(MoO4)2 and comparative 

observation of the properties within the set of RbLn(MoO4)2 (Ln = Nd, Sm, Eu). 

 



2. Experimental 

The commercial MoO3 (99.99%, Red Chemist, Ltd., Russia), Rb2CO3 (99.9%, Aldrich) and 

Eu2O3 (99.99%, Red Chemist, Ltd., Russia) were taken as the starting materials. The crystalline 

molybdate samples were prepared in ceramic crucibles using the solid state reaction method. 

Initially, Rb2MoO4 and Eu2(MoO4)3 were obtained. The heat treatment of stoichiometric mixtures 

of the initial materials was started at T = 450 °C and followed by a step-wise temperature increase 

up to T = 600 °C (Rb2MoO4) and 1000 °C (Eu2(MoO4)3). Then, to prepare the starting charge for 

the synthesis of RbEu(MoO4)2, the Rb2MoO4 and Eu2(MoO4)3 molybdates were ground and mixed 

in stoichiometric composition Rb2MoO4:Eu2(MoO4)3 = 1:1. After that, the mixture was heated to 

490C and kept for about 70 h and, then, it was fired at T = 600C by 150 h to yield RbEu(MoO4)2. 

The temperature was controlled at a precision of ±2°C up to 1200°C with an OMRON controller. 

After the heat treatment, the sample was slowly cooled to room temperature together with the 

furnace at an estimated cooling rate of ~12°C/min.  

The final powder product micromorphology was observed by scanning electron microscopy 

(SEM) with the use of an LEO 1430 electron microscope. The chemical composition of the powder 

sample was measured by a scanning electron microscope Hitachi S-3400N equipped by an energy 

dispersive spectrometer INCA Energy 350 manufactured by Oxford Instruments. The composition 

measurements were averaged over the area of 100100 m2, the electron beam energy was 20 keV 

and  the beam current was 0,5 nA.  

The powder X-ray diffraction data were recorded by a D8 ADVANCE Bruker AXS 

diffractometer (Vantec-1 detector) at room temperature using the CuKα radiation and scanning over 

the range of 2θ = 8-140°. The variable counting time (VCT) and step size (VSS) scheme were used 

to collect the diffraction data. The measurement time was systematically increased towards higher 

2θ angles, leading to a drastically improved data quality [28], and this algorithm was proved in 

several contributions [29-31]. To collect the X-ray data using a VCT scheme, four ranges were 

generated on the diffraction pattern: 5°–38.5° (exposure per point: 1 s; step: 0.016°), 38.5°–60.5° 



(exposure per point: 3 s; step: 0.024°), 60.5°–97.5° (exposure per point: 5 s; step: 0.032°) and 

97.5°–140° (exposure per point: 8 s; step: 0.040°). The total experimental time was equal to 6 h. 

Rietveld refinement was performed  using TOPAS 4.2 [32]. 

The differential scanning calorimetry (DSC) measurements were performed by means of a 

simultaneous thermal analyzer NETZSCH STA 449 F3 Jupiter, in the temperature range from  400 

to 1423 K at the heating rate of 10 K/min.  The RbEu(MoO4)2 powder was placed into the Pt 

crucible and heated up and cooled down in the Ar atmosphere. 

The unpolarized Raman study of the powder sample was carried out in a back-scattering 

geometry. To avoid the possible confusion between the Raman lines and photoluminescence lines 

of Eu3+ ions, two sets of experiments were carried out, with 514.5 and 1064 nm wavelengths of 

laser excitations. The Raman experiment with the Nd:YAG laser (1064 nm) was carried out on 

Raman spectrometer Bruker RFS/100 (spectral resolution 2 cm-1). The laser irradiation of an argon 

laser (514.5 nm, Spectra-Physics Stabilite 2017) was used for the Raman experiment after passing a 

monochromator [33] to suppress laser plasma lines. The laser beam was focused on the sample by a 

lens with the focal length of 60 mm, and this lens collected the scattered light. A triple-grating 

spectrometer TriVista 777 was used for the Raman scattering registration in a single stage mode 

(single grating plus a notch filter) to collect a signal for the Raman shift from 530 to 1070 cm-1 and 

in the triple-grating mode for the Raman shift from 20 to 560 cm-1. the spectral resolution was ~2.5 

cm-1. The wavelength calibration of the spectra was made by a comparison of a neon-discharge 

lamp spectrum with the tabular data.  

The high-resolution luminescence spectra were recorded with the help of the triple-

monochromator Horiba Jobin Yvon T64000 Raman spectrometer in the 180o geometry and in a 

double subtractive mode. A liquid-nitrogen-cooled Symphony CCD detector was used for the 

collection of luminescence. Employing 100 m slits and 1800 g/mm enabled achieving the spectral 

resolution as high as 4 cm-1 for luminescence measurements. The samples were placed within the 

focal plane of Olympus BX41 microscope with a Olympus 50x objective lens (f = 0.8 mm 



NA=0.75) that enabled a 2 μm focal spot at the sample. The excitation of luminescence spectra was 

performed using the 514.5 nm line from a single-mode Spectra-Physics Stabilite 2017 Ar+ laser, the 

power of the excitation being limited to 5 mW at the sample.  

 

3. Results and discussions 

The final high temperature synthesis product was found to be of light-cream color that is 

common for Eu3+-containing oxide compounds [13,17,34-36]. A typical SEM image of the powder 

sample is shown in Fig. 1. As seen, the synthesis resulted in the agglomerates 2-20 m in size 

formed by partly coalescent individual plate-like partly-faceted grains with a diameter below 1-5 

m. The faceted micromorphology is common for molybdates when the temperature/time 

conditions used in the synthesis are high enough for the active oxide grain interdiffusion and 

possible material exchange via the MoO3 vapor [17,37,38]. Typically, the presence of faceted 

microcrystals in the powder is a robust indicator of a high structural quality of the sample 

[17,25,33]. Besides, it should be pointed that the RbEu(MoO4)2 particles possess a strong charging 

effect during SEM measurements and this reveals their very low conductivity common for the 

oxides without oxygen vacancies. The chemical composition of the sample, as obtained by EDS, is 

shown in Table S1. The results are in a good relation to nominal composition Rb:Eu:Mo:O = 

8.3:8.3:16.7:66.7. 

The initial examination of the XRD pattern of the synthesized powder sample revealed that it 

resembles that of RbNd(MoO4)2 [20]. The final Rietveld profiles are shown in Fig. 2. There are no 

foreign diffraction peaks and all peaks of the XRD pattern were indexed by an orthorhombic cell 

(space group Pbcn) with parameters close to those of RbNd(MoO4)2 [20]. Therefore, the crystal 

structure of RbNd(MoO4)2 was taken as a starting model for Rietveld refinement. All thermal 

parameters of ions were refined at the isotropic approximation and individually. The refinement was 

stable and gave low R-factors (Table 1, Fig. 2). The atom coordinates and main bond lengths 

obtained for RbEu(MoO4)2 are summarized in Table 2S and Table 3S, respectively.  



The obtained RbEu(MoO4)2 structure is illustrated in Fig. 3. The asymmetric unit cell of 

RbEu(MoO4)2 crystal structure contains one Rb+, one Eu3+, one Mo6+ and four O2- ions. The Rb+ 

and Eu3+ ions are located in special Wyckoff sites 4c with local symmetry С2. The Rb+ ion is 

coordinated by six O2- ions (d(Rb–O) = 2.798 (8)–2.98 (1) Å) forming a distorted octahedron, while 

the Eu3+ ion is coordinated by eight O2− ions (d(Eu–O) = 2.34(1)–2.59(1) Å) forming a square 

antiprism. The Mo6+ ion is located in general site 8d and it is coordinated by four O2− ions forming 

a tetrahedron. This tetrahedron is linked with EuO8 and RbO6 polyhedrons by nodes and, formally, 

the MoO4 group is a bridge between these two polyhedrons. In addition, EuO8 polyhedrons are 

linked with each other by the edges forming the columns along the c-axis, RbO6 polyhedrons are 

joined with each other by the nodes forming a 2D layer in the ac plane and EuO8 with RbO6 are 

linked by the edges forming a 3D network. The topological analysis of the net by ToposPro 

program [39], using simplification that Eu3+, Rb+ and Mo6+ are first, second and third nodes, 

revealed that this is a 3-nodal (7-c)2(11-c)(11-c) net with point symbol  

(312.423.518.62)(312.424.514.65)(36.413.52)2 which is new. 

Two endothermic signals at 817 and 1250 K were detected upon the sample heating (Fig. 4a). 

During cooling, RbEu(MoO4)2 shows an exothermic effect confirming the crystallization 

temperature at 1197 K. One phase transition (PT) at 817 K (onset on heating) and at 769 K (onset 

on cooling) was detected thus confirmed that the phase transition in RbEu(MoO4)2 is reversible. To 

estimate character of the endoeffect, the temperature program was carried out in the mode 2 heating 

and 2 cooling cycles [40]. Changing of the temperature scanning direction for composition 

RbEu(MoO4)2 allows fixing the temperature hysteresis (Fig. 4b). The reversible phase transition 

was also confirmed by XRD, where XRD patterns before and after the phase change were different. 

The Raman spectra of RbEu(MoO4)2 powder obtained with the excitations at 1064 and 514.5 

nm shown in Figure 5. The appearance of luminescent lines 5D1–
7F0 of Eu3+ ions is observed at 442 

and 459 cm–1 under the excitation at 514.5 nm, and, also, the Raman signal in the high-wavenumber 

range is overlapped with the luminescent band 5D1–
7F1 of Eu3+ ions, as was shown in [17]. The 



group theory analysis predicts 72 Raman-active modes for the RbEu(MoO4)2 crystal in the D14
2h 

structure. These modes are distributed among the irreducible representations as 

17Ag+19B1g+17B2g+19B3g. The free tetrahedral MoO4
2– ion has four normal vibration modes. All 

modes are Raman active (ν1 symmetric stretching (A1), ν2 symmetric bending (E), ν3 antisymmetric 

stretching (T2) and ν4 antisymmetric bending (T2)) [41]. In the case of RbEu(MoO4)2, the site 

symmetry of MoO4
2– ions (C1) is lower than that of isolated molecule (Td), and that leads to the 

splitting of double degenerate E and triply degenerate T2 modes. From the correlation diagram 

shown in Table 2, one can conclude that four lines can appear in the region of symmetric stretching 

and twelve modes can appear in the region of antisymmetric stretching of the MoO4
2– ion, and that 

explains a complex spectral shape in this wavenumber range. It is interesting to compare the Raman 

spectra of orthorhombic crystals RbLn(MoO4)2 (Ln = Nd, Sm, Eu), as shown in Fig. 6 [22,23]. The 

isomorphic replacement of rare-earth ion in the RbLn(MoO4)2 (Ln = Nd, Sm, Eu) family leads to 

differences in the lattice parameters and bond length values of MoO4
2– ions, and that, in turn, leads 

to the differences in wavenumber values in the region of stretching (Fig. 6a) and bending vibrations 

(Fig. 6b). 

The overview of RbEu(MoO4)2 photoluminescence spectrum under the excitation at 514.5 nm is 

given in Fig. 7. The longer wavelength part of the spectrum is multiplied by 3000 to reveal the 

weakest transitions. More detailed spectra of each band are presented in Supplementary materials 

(Fig. S1). An interesting feature of Eu ion luminescence spectra in orthorhombic RbEu(MoO4)2 is 

the absolute domination of hypersensitive 5D0 → 7F2 transition, for instance, in comparison with the 

tetragonal Eu:NaGd(WO4)2 crystal [42]. A similar feature was earlier observed for monoclinic 

Eu2(MoO4)3. Additionally, the domination of a single component corresponding to a transition 

between crystal field split sublevels within the 5D0 → 7F2 , 
5D0 → 7F3 and 5D0 → 7F4 bands was 

observed. These features, generally speaking, are favorable for obtaining the laser generation at the 

5D0 → 7F2 transition that has not been obtained yet at room temperature, since single dominated line 



in the luminescence must unavoidably result in the increase of stimulated emission cross section 

within a narrow spectral range of this line. 

To evaluate the relative efficiency of Eu3+ luminescence in RbEu(MoO4)2, we compared the 

luminescence intensities of equivalent samples of RbEu(MoO4)2 and monoclinic Eu2(MoO4)3 under 

identical spectrometer settings. The luminescence in RbEu(MoO4)2 peaks at 613.9 nm with the 

intensity of 2.25 times smaller than the corresponding peak in Eu2(MoO4)3 (at 615.6 nm). In view of 

the high Eu concentration in both crystals, this intensity ratio mainly characterizes the competition 

between the radiative probability and the influence of concentration quenching. However, the 

difference in the Eu content must be accounted for. From the crystal structure data, the Eu content 

per cm3 in RbEu(MoO4)2 is 1.67 times smaller than that in Eu2(MoO4)3. Due to the similarity of 

higher-energy vibrational spectra of both crystals, the influence of concentration quenching can be 

roughly estimated to be the same in both crystals. Taking all these obstacles into considerations, we 

can deduce that the effect of the absence of central inversion symmetry that contributes to the rise 

of oscillator strength at the hypersensitive transition is approximately the same both in the crystal 

under study and in the reference crystal.  

The ultranarrow 5D0 → 7F0 transition in RbEu(MoO4)2 is positioned at 580.2 nm being 0.2 nm 

blue shifted, with respect to the reference crystal. Its width is approximately the same as in the 

europium molybdate, while the intensity is 16 times smaller. Since both hypersensitive and 

ultranarrow transitions start from the same luminescing level, the difference in the relative intensity 

of these transitions in two crystals must be ascribed exclusively to the local symmetry of Eu3+ ions. 

The latter in monoclinic europium molybdate is C1, while it is C2 in RbEu(MoO4)2. Both 

symmetries are favorable for breaking the prohibition of the transition between J=0 states. 

Therefore, we must conclude that mirror symmetry violation effect of the local environment of the 

Eu3+ ion in RbEu(MoO4)2 is much smaller than that in Eu2(MoO4)3. 

 

4. Conclusions 



In the KY(MoO4)2 molybdate family, a new orthorhombic Rb-containing molybdate 

RbEu(MoO4)2 is discovered, and this further extends the nomenclature of double molybdate crystals 

available in this family. As it is clear, this molybdate family covers a wide range of alkaline and 

rare earth elements, including those appropriate for laser and photonic applications, covering the 

creation of new phosphors. Thus, wider design and deep investigation of the compounds related to 

the ALn(MoO4)2 (A = Tl, alkaline metals; Ln = Y, rare earth metals) crystal family is topical, 

including a search for new compounds and solid solutions, the development of crystal growth 

methods, observation of electronic and luminescence characteristics. This opens a door for the 

estimation of this molybdate family potential for practical applications. The luminescence 

properties of Eu3+ ions indicate that the Eu-activated crystals of the ALn(MoO4)2 family (Ln = Gd, 

La and probably Y and Lu) can be designed and they could be good candidates for self-doubling 

Eu-lasing media. 
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Table 1. Main parameters of processing and refinement of the RbEu(MoO4)2  sample 

Compound RbEu(MoO4)2 

Sp.Gr. Pbcn 

a, Å 5.13502 (5) 

b, Å 18.8581 (2) 

c, Å 8.12849 (7) 

V, Å3 787.13 (1) 

Z 4 

2θ-interval, º 5-140 

No. of reflections 753 

No. of refined 

parameters 
51 

Rwp, % 1.85 

Rp, % 1.86 

Rexp, % 1.14 

χ2 1.63 

RB, % 0.86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Correlation diagram of internal vibrations of the MoO4
2– molecular group in the 

RbEu(MoO4)2 (Infrared active modes not included). 

Free ion sym. 

Td 

Site sym. 

C1 

Crystal sym. 

D2h 

A1 (ν1) A Ag+B1g+B2g+B3g 

E (ν2) 2A 2Ag+2B1g+2B2g+2B3g 

T2 (ν3) 3A 3Ag+3B1g+3B2g+3B3g 

T2 (ν4) 3A 3Ag+3B1g+3B2g+3B3g 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Captions 

Fig. 1. SEM pattern recorded for the RbEu(MoO4)2 particles.  

Fig. 2. Measured (red), calculated (black) and differential (blue) diffraction patterns of (a) 

RbEu(MoO4)2. 

Fig. 3.. Crystal structure of RbEu(MoO4)2. The unit cell is outlined. The lone atoms, except for Rb 

ones, are omitted for clarity. 

Fig. 4. DSC measurements: (a) heating up to melting and (b) heating-cooling over the temperature 

range of 400 – 1423 K. 

Fig. 5. The Raman spectra of RbEu(MoO4)2 recorded at 1064 (a) and 514.5 nm (b). The peaks 

related to Eu3+ luminescence are shown with arrows, and the artefact is shown with an 

asterisk. 

Fig. 6. Raman spectra of RbLn(MoO4)2 molybdates (a) in the range of high-wavenumber values and 

(b) in the range of bending vibrations of MoO4
2– ions. 

Fig. 7. Photoluminescence spectrum under the excitation at 514.5 nm. 
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Fig. 7. 

 

 

 

 

 

 

 

 

 

 


