19 research outputs found

    Parathyroid hormone and phosphate homeostasis in patients with Bartter and Gitelman syndrome:an international cross-sectional study

    Get PDF
    Background:Small cohort studies have reported high parathyroid hormone (PTH) levels in patients with Bartter syndrome and lower serum phosphate levels have anecdotally been reported in patients with Gitelman syndrome. In this cross-sectional study, we assessed PTH and phosphate homeostasis in a large cohort of patients with salt-losing tubulopathies. Methods:Clinical and laboratory data of 589 patients with Bartter and Gitelman syndrome were provided by members of the European Rare Kidney Diseases Reference Network (ERKNet) and the European Society for Paediatric Nephrology (ESPN). Results:A total of 285 patients with Bartter syndrome and 304 patients with Gitelman syndrome were included for analysis. Patients with Bartter syndrome type I and II had the highest median PTH level (7.5 pmol/L) and 56% had hyperparathyroidism (PTH &gt;7.0 pmol/L). Serum calcium was slightly lower in Bartter syndrome type I and II patients with hyperparathyroidism (2.42 versus 2.49 mmol/L; P = .038) compared to those with normal PTH levels and correlated inversely with PTH (rs −0.253; P = .009). Serum phosphate and urinary phosphate excretion did not correlate with PTH. Overall, 22% of patients had low serum phosphate levels (phosphate—standard deviation score &lt; −2), with the highest prevalence in patients with Bartter syndrome type III (32%). Serum phosphate correlated with tubular maximum reabsorption of phosphate/glomerular filtration rate (TmP/GFR) (rs 0.699; P &lt; .001), suggesting renal phosphate wasting. Conclusions:Hyperparathyroidism is frequent in patients with Bartter syndrome type I and II. Low serum phosphate is observed in a significant number of patients with Bartter and Gitelman syndrome and appears associated with renal phosphate wasting.</p

    Parathyroid hormone and phosphate homeostasis in patients with Bartter and Gitelman syndrome:an international cross-sectional study

    Get PDF
    Background:Small cohort studies have reported high parathyroid hormone (PTH) levels in patients with Bartter syndrome and lower serum phosphate levels have anecdotally been reported in patients with Gitelman syndrome. In this cross-sectional study, we assessed PTH and phosphate homeostasis in a large cohort of patients with salt-losing tubulopathies. Methods:Clinical and laboratory data of 589 patients with Bartter and Gitelman syndrome were provided by members of the European Rare Kidney Diseases Reference Network (ERKNet) and the European Society for Paediatric Nephrology (ESPN). Results:A total of 285 patients with Bartter syndrome and 304 patients with Gitelman syndrome were included for analysis. Patients with Bartter syndrome type I and II had the highest median PTH level (7.5 pmol/L) and 56% had hyperparathyroidism (PTH &gt;7.0 pmol/L). Serum calcium was slightly lower in Bartter syndrome type I and II patients with hyperparathyroidism (2.42 versus 2.49 mmol/L; P = .038) compared to those with normal PTH levels and correlated inversely with PTH (rs −0.253; P = .009). Serum phosphate and urinary phosphate excretion did not correlate with PTH. Overall, 22% of patients had low serum phosphate levels (phosphate—standard deviation score &lt; −2), with the highest prevalence in patients with Bartter syndrome type III (32%). Serum phosphate correlated with tubular maximum reabsorption of phosphate/glomerular filtration rate (TmP/GFR) (rs 0.699; P &lt; .001), suggesting renal phosphate wasting. Conclusions:Hyperparathyroidism is frequent in patients with Bartter syndrome type I and II. Low serum phosphate is observed in a significant number of patients with Bartter and Gitelman syndrome and appears associated with renal phosphate wasting.</p

    Disease recurrence in paediatric renal transplantation

    Get PDF
    Renal transplantation (Tx) is the treatment of choice for end-stage renal disease. The incidence of acute rejection after renal Tx has decreased because of improving early immunosuppression, but the risk of disease recurrence (DR) is becoming relatively high, with a greater prevalence in children than in adults, thereby increasing patient morbidity, graft loss (GL) and, sometimes, mortality rate. The current overall graft loss to DR is 7–8%, mainly due to primary glomerulonephritis (70–80%) and inherited metabolic diseases. The more typical presentation is a recurrence of the full disease, either with a high risk of GL (focal and segmental glomerulosclerosis 14–50% DR, 40–60% GL; atypical haemolytic uraemic syndrome 20–80% DR, 10–83% GL; membranoproliferative glomerulonephritis 30–100% DR, 17–61% GL; membranous nephropathy ∼30% DR, ∼50% GL; lipoprotein glomerulopathy ∼100% DR and GL; primary hyperoxaluria type 1 80–100% DR and GL) or with a low risk of GL [immunoglobulin (Ig)A nephropathy 36–60% DR, 7–10% GL; systemic lupus erythematosus 0–30% DR, 0–5% GL; anti-neutrophilic cytoplasmic antibody (ANCA)-associated glomerulonephritis]. Recurrence may also occur with a delayed risk of GL, such as insulin-dependent diabetes mellitus, sickle cell disease, endemic nephropathy, and sarcoidosis. In other primary diseases, the post-Tx course may be complicated by specific events that are different from overt recurrence: proteinuria or cancer in some genetic forms of nephrotic syndrome, anti-glomerular basement membrane antibodies-associated glomerulonephritis (Alport syndrome, Goodpasture syndrome), and graft involvement as a consequence of lower urinary tract abnormality or human immunodeficiency virus (HIV) nephropathy. Some other post-Tx conditions may mimic recurrence, such as de novo membranous glomerulonephritis, IgA nephropathy, microangiopathy, or isolated specific deposits (cystinosis, Fabry disease). Adequate strategies should therefore be added to kidney Tx, such as donor selection, associated liver Tx, plasmatherapy, specific immunosuppression protocols. In such conditions, very few patients may be excluded from kidney Tx only because of a major risk of DR and repeated GL. In the near future the issue of DR after kidney Tx may benefit from alternatives to organ Tx, such as recombinant proteins, specific monoclonal antibodies, cell/gene therapy, and chaperone molecules

    A rare cause of nephrotic syndrome-sphingosine-1-phosphate lyase (SGPL1) deficiency: 6 cases and a review of the literature

    No full text
    Background Recently, recessive mutations in SGPL1 (sphingosine-1-phosphate lyase), which encodes the final enzyme of sphingolipid metabolism, have been reported to cause steroid-resistant nephrotic syndrome, adrenal insufficiency, and many other organ/system involvements. We aimed to determine the clinical and genetic characteristics, and outcomes in patients with SGPL1 mutations

    Basal damage and oxidative DNA damage in children with chronic kidney disease measured by use of the comet assay

    No full text
    One consequence of chronic kidney disease (CKD) is an elevated risk for cancer. There is sufficient evidence to conclude that there is an increased incidence of at least some cancers in kidney-dialysis patients. Cancer risk after kidney transplantation has mainly been attributed to immunosuppressive therapy. There are no data evaluating DNA damage in children with CKD, in dialysis patients, or following kidney transplantation. In this study, the comet assay and the enzyme-modified comet assay - with the use of endonuclease III (Endo III) and formamidopyrimidine glycosylase (FPG) enzymes - were conducted to investigate the basal damage and the oxidative DNA damage as a result of treatment in peripheral blood lymphocytes of children. Children at various stages of treatment for kidney disease, including pre-dialysis patients (PreD) (n = 17), regular hemodialysis patients (HD) (n = 15), and those that received kidney transplants (Tx) (n = 17), comprised the study group. They were compared with age- and gender-matched healthy children (n = 20) as a control group. Our results show that the %DNA intensity, a measure of basal damage, was significantly increased in children with CKD (mean +/- SD) (5.22 +/- 1.57) and also in each of the PreD, HD, and Tx groups [(4.92 +/- 1.23), (4.91 +/- 1.35), and (5.79 +/- 1.94), respectively, vs the healthy children (2.74 +/- 2.91) (p < 0.001). Significant increases in oxidative DNA damage were only found in the FPG-sensitive sites for the PreD and Tx groups, compared with control and HD groups (p < 0.05), suggesting that basal DNA damage was more evident for the PreD, HD, and Tx groups. The findings of the present study indicate a critical need for further research on genomic damage with different endpoints and also for preventive measures and improvements in treatment of pediatric patients, in order to improve their life expectancy. (C) 2011 Elsevier B.V. All rights reserved

    Respiratory-Chain Deficiency Presenting As Diffuse Mesangial Sclerosis with Nphs3 Mutation

    No full text
    Renal manifestations of mitochondrial cytopathies have been described, but nephrotic syndrome with respiratory-chain disorders have been described extremely rarely. We report a 9-month-old boy with a mitochondrial cytopathy preceded by a 2-month history of steroid-resistant nephrotic syndrome. Percutaneous renal biopsy revealed diffuse mesangial sclerosis, and mutational analysis was compatible with PLCE1 mutation. However, electron microscopic findings of renal tissue, sensorineural hearing loss, and other ocular and neurologic findings led us to suspect mitochondrial cytopathy. Muscle tissue analysis showed a deficiency of the respiratory chain complex IV. The clinical presentation of our patient is not typical for primary cytochrome oxidase (COX) deficiency but showed similarities with patients carrying AR mutations in COX10. This was the first case in the literature with both PLCE1 mutation and COX deficiency. We could not identify pathogenic mutations in the COX10 gene, suggesting that PLCE1 deficiency could be the cause of the secondary deficiency of COX. Another, more likely, possibility is that the mitochondriopathy phenotype is caused by another mutation homozygous by descent in a yet unidentified recessive gene.Wo
    corecore