211 research outputs found

    A Liquid Cryogen Absorber for Mice

    Get PDF

    ATLAS End Cap Toroid Cold Mass and Cryostat Integration

    Get PDF

    Quench propagation and detection in the superconducting bus-bars of the ATLAS magnets

    Get PDF
    The ATLAS superconducting magnet system comprising Barrel (BT) and End-Cap Toroids (ECT) and also Central Solenoid (CS) will store more than 1.5 GJ of magnetic energy. The magnet system will have many superconducting busbars, a few meters long each, running from the current leads to Central Solenoid and Toroids as well as between the coils of each Toroid. Quench development in the busbars, i.e., the normal zone propagation process along the busbar superconductors, is slow and exhibits very low voltages. Therefore, its timely and appropriate detection represents a real challenge. The temperature evolution in the busbars under quench is of primary importance. Conservative calculations of the temperature were performed for all the magnets. Also, a simple and effective method to detect a normal zone in a busbar is presented. A thin superconducting wire, whose normal resistance can be easily detected, is placed in a good thermal contact to busbar. Thus, the wire can operate as straightforward and low-noise quench-detector. (4 refs)

    ATLAS End Cap Toroid Integration and Test

    Get PDF

    The ATLAS magnet test facility at CERN

    Get PDF
    The magnet system for the ATLAS detector at CERN consists of a Barrel Toroid (BT), two End-Cap Toroids (ECT) and a Central Solenoid (CS). The overall dimensions of the system are 20 m in diameter by 26 m in length. Before underground installation all coils will be tested on surface in a magnet test facility which is under construction. Moreover two model coils are tested as well as subsystems. In this paper the design and construction of the test facility is presented. (3 refs)

    AmrZ is a major determinant of c-di-GMP levels in Pseudomonas fluorescens F113

    Get PDF
    The transcriptional regulator AmrZ is a global regulatory protein conserved within the pseudomonads. AmrZ can act both as a positive and a negative regulator of gene expression, controlling many genes implicated in environmental adaption. Regulated traits include motility, iron homeostasis, exopolysaccharides production and the ability to form biofilms. In Pseudomonas fluorescens F113, an amrZ mutant presents a pleiotropic phenotype, showing increased swimming motility, decreased biofilm formation and very limited ability for competitive colonization of rhizosphere, its natural habitat. It also shows different colony morphology and binding of the dye Congo Red. The amrZ mutant presents severely reduced levels of the messenger molecule cyclic-di-GMP (c-di-GMP), which is consistent with the motility and biofilm formation phenotypes. Most of the genes encoding proteins with diguanylate cyclase (DGCs) or phosphodiesterase (PDEs) domains, implicated in c-di-GMP turnover in this bacterium, appear to be regulated by AmrZ. Phenotypic analysis of eight mutants in genes shown to be directly regulated by AmrZ and encoding c-di-GMP related enzymes, showed that seven of them were altered in motility and/or biofilm formation. The results presented here show that in P. fluorescens, AmrZ determines c-di-GMP levels through the regulation of a complex network of genes encoding DGCs and PDEs
    • …
    corecore