296 research outputs found
Contribution of the Staphylococcus aureus Atl AM and GL murein hydrolase activities in cell division, autolysis, and biofilm formation.
The most prominent murein hydrolase of Staphylococcus aureus, AtlA, is a bifunctional enzyme that undergoes proteolytic cleavage to yield two catalytically active proteins, an amidase (AM) and a glucosaminidase (GL). Although the bifunctional nature of AtlA has long been recognized, most studies have focused on the combined functions of this protein in cell wall metabolism and biofilm development. In this study, we generated mutant derivatives of the clinical S. aureus isolate, UAMS-1, in which one or both of the AM and GL domains of AtlA have been deleted. Examination of these strains revealed that each mutant exhibited growth rates comparable to the parental strain, but showed clumping phenotypes and lysis profiles that were distinct from the parental strain and each other, suggesting distinct roles in cell wall metabolism. Given the known function of autolysis in the release of genomic DNA for use as a biofilm matrix molecule, we also tested the mutants in biofilm assays and found both AM and GL necessary for biofilm development. Furthermore, the use of enzymatically inactive point mutations revealed that both AM and GL must be catalytically active for S. aureus to form a biofilm. The results of this study provide insight into the relative contributions of AM and GL in S. aureus and demonstrate the contribution of Atl-mediated lysis in biofilm development
Characterization of constricted fruit (ctf) Mutant Uncovers a Role for AtMYB117/LOF1 in Ovule and Fruit Development in Arabidopsis thaliana
Pistil and fruit morphogenesis is the result of a complex gene network that is not yet fully understood. A search for novel genes is needed to make a more comprehensive model of pistil and fruit development. Screening for mutants with alterations in fruit morphology generated by an activation tagging strategy resulted in the isolation of the ctf (constricted fruit) mutant. It is characterized by a) small and wrinkled fruits, with an enlarged replum, an amorphous structure of the septum and an irregular distribution of ovules and seeds; b) ectopic carpelloid structures in sepals bearing ovule-like structures and c) dwarf plants with curled rosette leaves. The overexpressed gene in ctf was AtMYB117, also named LOF1 (LATERAL ORGAN FUSION1). AtMYB117/LOF1 transcripts were localized in boundary regions of the vegetative shoot apical meristem and leaf primordia and in a group of cells in the adaxial base of petioles and bracts. Transcripts were also detected in the boundaries between each of the four floral whorls and during pistil development in the inner of the medial ridges, the placenta, the base of the ovule primordia, the epidermis of the developing septum and the outer cell layers of the ovule funiculi. Analysis of changes of expression of pistil-related genes in the ctf mutant showed an enhancement of SHATTERPROOF1 (SHP1) and SHP2 expression. All these results suggest that AtMYB117/LOF1 is recruited by a variety of developmental programs for the establishment of boundary regions, including the development of floral organs and the initiation of ovule outgrowth
On Critchfield's proposal: student concerns and recommendations
This is the published version, reproduced here with the publisher's permission. This article is also available electronically from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359848/.No abstract available for this item
Catabolic Ornithine Carbamoyltransferase Activity Facilitates Growth of Staphylococcus aureus in Defined Medium Lacking Glucose and Arginine
Previous studies have found that arginine biosynthesis in Staphylococcus aureus is repressed via carbon catabolite repression (CcpA), and proline is used as a precursor. Unexpectedly, however, robust growth of S. aureus is not observed in complete defined medium lacking both glucose and arginine (CDM-R). Mutants able to grow on agar-containing defined medium lacking arginine (CDM-R) were selected and found to contain mutations within ahrC, encoding the canonical arginine biosynthesis pathway repressor (AhrC), or single nucleotide polymorphisms (SNPs) upstream of the native arginine deiminase (ADI) operon arcA1B1D1C1. Reverse transcription-PCR (RT-PCR) studies found that mutations within ccpA or ahrC or SNPs identified upstream of arcA1B1D1C1 increased the transcription of both arcB1 and argGH, encoding ornithine carbamoyltransferase and argininosuccinate synthase/lyase, respectively, facilitating arginine biosynthesis. Furthermore, mutations within the AhrC homologue argR2 facilitated robust growth within CDM-R. Complementation with arcB1 or arcA1B1D1C1, but not argGH, rescued growth in CDM-R. Finally, supplementation of CDM-R with ornithine stimulated growth, as did mutations in genes (proC and rocA) that presumably increased the pyrroline-5-carboxylate and ornithine pools. Collectively, these data suggest that the transcriptional regulation of ornithine carbamoyltransferase and, in addition, the availability of intracellular ornithine pools regulate arginine biosynthesis in S. aureus in the absence of glucose. Surprisingly, ~50% of clinical S. aureus isolates were able to grow in CDM-R. These data suggest that S. aureus is selected to repress arginine biosynthesis in environments with or without glucose; however, mutants may be readily selected that facilitate arginine biosynthesis and growth in specific environments lacking arginine. IMPORTANCE Staphylococcus aureus can cause infection in virtually any niche of the human host, suggesting that it has significant metabolic versatility. Indeed, bioinformatic analysis suggests that it has the biosynthetic capability to synthesize all 20 amino acids. Paradoxically, however, it is conditionally auxotrophic for several amino acids, including arginine. Studies in our laboratory are designed to assess the biological function of amino acid auxotrophy in this significant pathogen. This study reveals that the metabolic block repressing arginine biosynthesis in media lacking glucose is the transcriptional repression of ornithine carbamoyltransferase encoded by arcB1 within the native arginine deiminase operon in addition to limited intracellular pools of ornithine. Surprisingly, approximately 50% of S. aureus clinical isolates can grow in media lacking arginine, suggesting that mutations are selected in S. aureus that allow growth in particular niches of the human host
A Differential Effect of E. coli Toxin-Antitoxin Systems on Cell Death in Liquid Media and Biofilm Formation
Toxin-antitoxin (TA) modules are gene pairs specifying for a toxin and its antitoxin and are found on the chromosomes of many bacteria including pathogens. Here we report how each of five such TA systems in E. coli affect bacterial cell death differently in liquid media and during biofilm formation. Of all these systems, only the TA system mazEF mediated cell death both in liquid media and during biofilm formation. At the other extreme, as our results have revealed here, the TA system dinJ-YafQ is unique in that it is involved only in the death process during biofilm formation. Cell death governed by mazEF and dinJ-YafQ seems to participate in biofilm formation through a novel mechanism
Four Design Criteria for Any Future Contractarian Theory of Business Ethics
This article assesses the quality of Integrative Social Contracts Theory (ISCT) as a social contract argument. For this purpose, it embarks on a comparative analysis of the use of the social contract model as a theory of political authority and as a theory of social justice. Building on this comparison, it then develops four criteria for any future contractarian theory of business ethics (CBE). To apply the social contract model properly to the domain of business ethics, it should be: (1) self-disciplined, i.e., not aspire results beyond what the contract model can realistically establish; (2) argumentative, i.e., it should seek to provide principles that are demonstrative results of the contractarian method; (3) task-directed, i.e., it should be clear what the social contract thought-experiment is intended to model; and (4) domain-specific, i.e., the contractarian choice situation should be tailored to the defining problems of business ethics
Ciprofloxacin Causes Persister Formation by Inducing the TisB toxin in Escherichia coli
Persisters are specialized survivor cells that arise in populations of E. coli after antibiotic-mediated DNA damage induces the production of a small membrane-acting peptide TisB, which causes reversible dormancy. The TisB-dependent persisters are tolerant to multiple antibiotics
The Golden Beauty: Brain Response to Classical and Renaissance Sculptures
Is there an objective, biological basis for the experience of beauty in art? Or is aesthetic experience entirely subjective? Using fMRI technique, we addressed this question by presenting viewers, naΓ―ve to art criticism, with images of masterpieces of Classical and Renaissance sculpture. Employing proportion as the independent variable, we produced two sets of stimuli: one composed of images of original sculptures; the other of a modified version of the same images. The stimuli were presented in three conditions: observation, aesthetic judgment, and proportion judgment. In the observation condition, the viewers were required to observe the images with the same mind-set as if they were in a museum. In the other two conditions they were required to give an aesthetic or proportion judgment on the same images. Two types of analyses were carried out: one which contrasted brain response to the canonical and the modified sculptures, and one which contrasted beautiful vs. ugly sculptures as judged by each volunteer. The most striking result was that the observation of original sculptures, relative to the modified ones, produced activation of the right insula as well as of some lateral and medial cortical areas (lateral occipital gyrus, precuneus and prefrontal areas). The activation of the insula was particularly strong during the observation condition. Most interestingly, when volunteers were required to give an overt aesthetic judgment, the images judged as beautiful selectively activated the right amygdala, relative to those judged as ugly. We conclude that, in observers naΓ―ve to art criticism, the sense of beauty is mediated by two non-mutually exclusive processes: one based on a joint activation of sets of cortical neurons, triggered by parameters intrinsic to the stimuli, and the insula (objective beauty); the other based on the activation of the amygdala, driven by one's own emotional experiences (subjective beauty)
Emerging infectious disease implications of invasive mammalian species : the greater white-toothed shrew (Crocidura russula) is associated with a novel serovar of pathogenic Leptospira in Ireland
The greater white-toothed shrew (Crocidura russula) is an invasive mammalian species that was first recorded in Ireland in 2007. It currently occupies an area of approximately 7,600 km2 on the island. C. russula is normally distributed in Northern Africa and Western Europe, and was previously absent from the British Isles. Whilst invasive species can have dramatic and rapid impacts on faunal and floral communities, they may also be carriers of pathogens facilitating disease transmission in potentially naive populations. Pathogenic leptospires are endemic in Ireland and a significant cause of human and animal disease. From 18 trapped C. russula, 3 isolates of Leptospira were cultured. However, typing of these isolates by standard serological reference methods was negative, and suggested an, as yet, unidentified serovar. Sequence analysis of 16S ribosomal RNA and secY indicated that these novel isolates belong to Leptospira alstonii, a unique pathogenic species of which only 7 isolates have been described to date. Earlier isolations were limited geographically to China, Japan and Malaysia, and this leptospiral species had not previously been cultured from mammals. Restriction enzyme analysis (REA) further confirms the novelty of these strains since no similar patterns were observed with a reference database of leptospires. As with other pathogenic Leptospira species, these isolates contain lipL32 and do not grow in the presence of 8-azagunaine; however no evidence of disease was apparent after experimental infection of hamsters. These isolates are genetically related to L. alstonii but have a novel REA pattern; they represent a new serovar which we designate as serovar Room22. This study demonstrates that invasive mammalian species act as bridge vectors of novel zoonotic pathogens such as Leptospira
- β¦