414 research outputs found

    Estimation of viral richness from shotgun metagenomes using a frequency count approach

    Get PDF
    BACKGROUND: Viruses are important drivers of ecosystem functions, yet little is known about the vast majority of viruses. Viral shotgun metagenomics enables the investigation of broad ecological questions in phage communities. One ecological characteristic is species richness, which is the number of different species in a community. Viruses do not have a phylogenetic marker analogous to the bacterial 16S rRNA gene with which to estimate richness, and so contig spectra are employed to measure the number of virus taxa in a given community. A contig spectrum is generated from a viral shotgun metagenome by assembling the random sequence reads into groups of sequences that overlap (contigs) and counting the number of sequences that group within each contig. Current tools available to analyze contig spectra to estimate phage richness are limited by relying on rank-abundance data. RESULTS: We present statistical estimates of virus richness from contig spectra. The program CatchAll (http://www.northeastern.edu/catchall/) was used to analyze contig spectra in terms of frequency count data rather than rank-abundance, thus enabling formal statistical analyses. Also, the influence of potentially spurious low-frequency counts on richness estimates was minimized by two methods, empirical and statistical. The results show greater estimates of viral richness than previous calculations in nearly all environments analyzed, including swine feces and reclaimed fresh water. CONCLUSIONS: CatchAll yielded consistent estimates of richness across viral metagenomes from the same or similar environments. Additionally, analysis of pooled viral metagenomes from different environments via mixed contig spectra resulted in greater richness estimates than those of the component metagenomes. Using CatchAll to analyze contig spectra will improve estimations of richness from viral shotgun metagenomes, particularly from large datasets, by providing statistical measures of richness

    Drug susceptibility of Plasmodium falciparum in eastern Uganda: a longitudinal phenotypic and genotypic study

    Get PDF
    Background: Treatment and control of malaria depends on artemisinin-based combination therapies (ACTs) and is challenged by drug resistance, but thus far resistance to artemisinins and partner drugs has primarily occurred in southeast Asia. The aim of this study was to characterise antimalarial drug susceptibility of Plasmodium falciparum isolates from Tororo and Busia districts in Uganda. Methods: In this prospective longitudinal study, P falciparum isolates were collected from patients aged 6 months or older presenting at the Tororo District Hospital (Tororo district, a site with relatively low malaria incidence) or Masafu General Hospital (Busia district, a high-incidence site) in eastern Uganda with clinical symptoms of malaria, a positive Giemsa-stained blood film for P falciparum, and no signs of severe disease. Ex-vivo susceptibilities to ten antimalarial drugs were measured using a 72-h microplate growth inhibition assay with SYBR Green detection. Relevant P falciparum genetic polymorphisms were characterised by molecular methods. We compared results with those from earlier studies in this region and searched for associations between drug susceptibility and parasite genotypes. Findings: From June 10, 2016, to July 29, 2019, 361 P falciparum isolates were collected in the Busia district and 79 in the Tororo district from 440 participants. Of 440 total isolates, 392 (89%) successfully grew in culture and showed excellent drug susceptibility for chloroquine (median half-maximal inhibitory concentration [IC50] 20·0 nM [IQR 12·0-26·0]), monodesethylamodiaquine (7·1 nM [4·3-8·9]), pyronaridine (1·1 nM [0·7-2·3]), piperaquine (5·6 nM [3·3-8·6]), ferroquine (1·8 nM [1·5-3·3]), AQ-13 (24·0 nM [17·0-32·0]), lumefantrine (5·1 nM [3·2-7·7]), mefloquine (9·5 nM [6·6-13·0]), dihydroartemisinin (1·5 nM [1·0-2·0]), and atovaquone (0·3 nM [0·2-0·4]). Compared with results from our study in 2010-13, significant improvements in susceptibility were seen for chloroquine (median IC50 288·0 nM [IQR 122·0-607·0]; p\u3c0·0001), monodesethylamodiaquine (76·0 nM [44·0-137]; p\u3c0·0001), and piperaquine (21·0 nM [7·6-43·0]; p\u3c0·0001), a small but significant decrease in susceptibility was seen for lumefantrine (3·0 nM [1·1-7·6]; p\u3c0·0001), and no change in susceptibility was seen with dihydroartemisinin (1·3 nM [0·8-2·5]; p=0·64). Chloroquine resistance (IC50\u3e100 nM) was more common in isolates from the Tororo district (11 [15%] of 71), compared with those from the Busia district (12 [4%] of 320; p=0·0017). We showed significant increases between 2010-12 and 2016-19 in the prevalences of wild-type P falciparum multidrug resistance protein 1 (PfMDR1) Asn86Tyr from 60% (391 of 653) to 99% (418 of 422; p\u3c0·0001), PfMDR1 Asp1246Tyr from 60% (390 of 650) to 90% (371 of 419; p\u3c0·0001), and P falciparum chloroquine resistance transporter (PfCRT) Lys76Thr from 7% (44 of 675) to 87% (364 of 417; p\u3c0·0001). Interpretation: Our results show marked changes in P falciparum drug susceptibility phenotypes and genotypes in Uganda during the past decade. These results suggest that additional changes will be seen over time and continued surveillance of susceptibility to key ACT components is warranted. Funding: National Institutes of Health and Medicines for Malaria Venture

    On Critchfield's proposal: student concerns and recommendations

    Get PDF
    This is the published version, reproduced here with the publisher's permission. This article is also available electronically from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3359848/.No abstract available for this item

    Characterization of constricted fruit (ctf) Mutant Uncovers a Role for AtMYB117/LOF1 in Ovule and Fruit Development in Arabidopsis thaliana

    Get PDF
    Pistil and fruit morphogenesis is the result of a complex gene network that is not yet fully understood. A search for novel genes is needed to make a more comprehensive model of pistil and fruit development. Screening for mutants with alterations in fruit morphology generated by an activation tagging strategy resulted in the isolation of the ctf (constricted fruit) mutant. It is characterized by a) small and wrinkled fruits, with an enlarged replum, an amorphous structure of the septum and an irregular distribution of ovules and seeds; b) ectopic carpelloid structures in sepals bearing ovule-like structures and c) dwarf plants with curled rosette leaves. The overexpressed gene in ctf was AtMYB117, also named LOF1 (LATERAL ORGAN FUSION1). AtMYB117/LOF1 transcripts were localized in boundary regions of the vegetative shoot apical meristem and leaf primordia and in a group of cells in the adaxial base of petioles and bracts. Transcripts were also detected in the boundaries between each of the four floral whorls and during pistil development in the inner of the medial ridges, the placenta, the base of the ovule primordia, the epidermis of the developing septum and the outer cell layers of the ovule funiculi. Analysis of changes of expression of pistil-related genes in the ctf mutant showed an enhancement of SHATTERPROOF1 (SHP1) and SHP2 expression. All these results suggest that AtMYB117/LOF1 is recruited by a variety of developmental programs for the establishment of boundary regions, including the development of floral organs and the initiation of ovule outgrowth

    Associations between Varied Susceptibilities to PfATP4 Inhibitors and Genotypes in Ugandan Plasmodium falciparum Isolates.

    Get PDF
    Among novel compounds under recent investigation as potential new antimalarial drugs are three independently developed inhibitors of the Plasmodium falciparum P-type ATPase (PfATP4): KAE609 (cipargamin), PA92, and SJ733. We assessed ex vivo susceptibilities to these compounds of 374 fresh P. falciparum isolates collected in Tororo and Busia districts, Uganda, from 2016 to 2019. Median IC50s were 65 nM for SJ733, 9.1 nM for PA92, and 0.5 nM for KAE609. Sequencing of pfatp4 for 218 of these isolates demonstrated many nonsynonymous single nucleotide polymorphisms; the most frequent mutations were G1128R (69% of isolates mixed or mutant), Q1081K/R (68%), G223S (25%), N1045K (16%), and D1116G/N/Y (16%). The G223S mutation was associated with decreased susceptibility to SJ733, PA92, and KAE609. The D1116G/N/Y mutations were associated with decreased susceptibility to SJ733, and the presence of mutations at both codons 223 and 1116 was associated with decreased susceptibility to PA92 and SJ733. In all of these cases, absolute differences in susceptibilities of wild-type (WT) and mutant parasites were modest. Analysis of clones separated from mixed field isolates consistently identified mutant clones as less susceptible than WT. Analysis of isolates from other sites demonstrated the presence of the G223S and D1116G/N/Y mutations across Uganda. Our results indicate that malaria parasites circulating in Uganda have a number of polymorphisms in PfATP4 and that modestly decreased susceptibility to PfATP4 inhibitors is associated with some mutations now present in Ugandan parasites

    Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix

    Get PDF
    Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide) at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell–cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA) are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications
    • …
    corecore