50 research outputs found

    Strain and correlation of self-organized Ge_(1-x)Mn_x nanocolumns embedded in Ge (001)

    Full text link
    We report on the structural properties of Ge_(1-x)Mn_x layers grown by molecular beam epitaxy. In these layers, nanocolumns with a high Mn content are embedded in an almost-pure Ge matrix. We have used grazing-incidence X-ray scattering, atomic force and transmission electron microscopy to study the structural properties of the columns. We demonstrate how the elastic deformation of the matrix (as calculated using atomistic simulations) around the columns, as well as the average inter-column distance can account for the shape of the diffusion around Bragg peaks.Comment: 9 pages, 7 figure

    Structure and magnetism of self-organized Ge(1-x)Mn(x) nano-columns

    Get PDF
    We report on the structural and magnetic properties of thin Ge(1-x)Mn(x)films grown by molecular beam epitaxy (MBE) on Ge(001) substrates at temperatures (Tg) ranging from 80deg C to 200deg C, with average Mn contents between 1 % and 11 %. Their crystalline structure, morphology and composition have been investigated by transmission electron microscopy (TEM), electron energy loss spectroscopy and x-ray diffraction. In the whole range of growth temperatures and Mn concentrations, we observed the formation of manganese rich nanostructures embedded in a nearly pure germanium matrix. Growth temperature mostly determines the structural properties of Mn-rich nanostructures. For low growth temperatures (below 120deg C), we evidenced a two-dimensional spinodal decomposition resulting in the formation of vertical one-dimensional nanostructures (nanocolumns). Moreover we show in this paper the influence of growth parameters (Tg and Mn content) on this decomposition i.e. on nanocolumns size and density. For temperatures higher than 180deg C, we observed the formation of Ge3Mn5 clusters. For intermediate growth temperatures nanocolumns and nanoclusters coexist. Combining high resolution TEM and superconducting quantum interference device magnetometry, we could evidence at least four different magnetic phases in Ge(1-x)Mn(x) films: (i) paramagnetic diluted Mn atoms in the germanium matrix, (ii) superparamagnetic and ferromagnetic low-Tc nanocolumns (120 K 400 K) and (iv) Ge3Mn5 clusters.Comment: 10 pages 2 colonnes revTex formatte

    Chemical ordering in magnetic FePd / Pd(001) epitaxial thin films induced by annealing

    Get PDF
    Chemically disordered FePd epitaxial layers are grown at room temperature by molecular beam epitaxy on a Pd(001) buffer layer and then annealed in order to induce the chemically ordered L10 (AuCu I) structure. Contrary to what is observed in the case of ordering during growth above room temperature, the ordered structure appears here with the three possible variants of the L10 phase. The ratio of the three different variant volumes is set by the residual epitaxial strain in the layer before annealing. It thus explains that for long annealing times, the long-range order parameter associated with the L10 variant with c along the (100) growth direction saturates at a value close to 0.65, and never reaches unity. Magnetic consequences of the ordering are studied

    Controlled switching of N\'eel caps in flux-closure magnetic dots

    Get PDF
    While magnetic hysteresis usually considers magnetic domains, the switching of the core of magnetic vortices has recently become an active topic. We considered Bloch domain walls, which are known to display at the surface of thin films flux-closure features called N\'eel caps. We demonstrated the controlled switching of these caps under a magnetic field, occurring via the propagation of a surface vortex. For this we considered flux-closure states in elongated micron-sized dots, so that only the central domain wall can be addressed, while domains remain unaffected.Comment: 4 pages, 3 figure

    Electrical and thermal spin accumulation in germanium

    Full text link
    In this letter, we first show electrical spin injection in the germanium conduction band at room temperature and modulate the spin signal by applying a gate voltage to the channel. The corresponding signal modulation agrees well with the predictions of spin diffusion models. Then by setting a temperature gradient between germanium and the ferromagnet, we create a thermal spin accumulation in germanium without any tunnel charge current. We show that temperature gradients yield larger spin accumulations than pure electrical spin injection but, due to competing microscopic effects, the thermal spin accumulation in germanium remains surprisingly almost unchanged under the application of a gate voltage to the channel.Comment: 7 pages, 3 figure

    Crossover from spin accumulation into interface states to spin injection in the germanium conduction band

    Full text link
    Electrical spin injection into semiconductors paves the way for exploring new phenomena in the area of spin physics and new generations of spintronic devices. However the exact role of interface states in spin injection mechanism from a magnetic tunnel junction into a semiconductor is still under debate. In this letter, we demonstrate a clear transition from spin accumulation into interface states to spin injection in the conduction band of nn-Ge. We observe spin signal amplification at low temperature due to spin accumulation into interface states followed by a clear transition towards spin injection in the conduction band from 200 K up to room temperature. In this regime, the spin signal is reduced down to a value compatible with spin diffusion model. More interestingly, we demonstrate in this regime a significant modulation of the spin signal by spin pumping generated by ferromagnetic resonance and also by applying a back-gate voltage which are clear manifestations of spin current and accumulation in the germanium conduction band.Comment: 5 pages, 4 figure

    Some Directions for Performance Improvement of Li-Ion Batteries out of Usual Paths

    Get PDF
    Recent developments at IMN will be shared on several research directions out of usual paths for performance improvement of Li-ion batteries. We will focus on innovative surface modifications of electrode components, new electrode compositions and architectures, and failure mechanism upon cycling by in-depth characterization through coupled advanced spectroscopic techniques. A molecular grafting approach has been proposed as a way to modify the interfacial chemical reactivity of oxide materials, which is detrimental to their long-term energy storage properties as electrodes of Li-ion batteries. Surface derivatization of powder oxide materials such as Li1.2V3O8 and Li(Mn,Ni)2O4 was accomplished by in situ electrografting of a diazonium salt during Li-ion intercalation, leading to a covalently bonded organic multilayer. Charge transfer is not impeded, while electrolyte decomposition is inhibited thus increasing the cycle life and decreasing the self-discharge. Carbon additives of classical porous electrodes occupy a large volume fraction which is lost for charge storage. Redox functionalization of the surface of some carbon additives has been successfully achieved through non-covalent grafting chemistry using multi-redox pyrene molecules synthesized on purpose. Such functionalized carbon additives have been used to increase the stored energy and power of C-coated LFP porous electrodes. Thicker electrodes are needed for higher energy density Li-ion batteries. We evaluate different directions in order to design new innovative electrode architectures for such a purpose. Our grafting chemistry has been further developed to achieve molecular junctions between non-carbon-coated LFP and multiwall carbon nanotubes (MWCNT) using a designed thiophene-based conjugated molecule. The strategy enables original architecturing of the cathode of Li-ion batteries, with the individual MWCNT being electronically nanocontacted at the surface of LFP grains. This advancement leads to much higher specific capacity and better capacity retention for non calendared thick electrodes, for which the electronic wiring of the electroactive material grains is a critical issue. Another direction followed is the use of conducting polymer additives in porous electrodes, which are able to act as both conducting fillers and mechanical reinforcement materials. We have synthesized a new form of lithium doped PANI, the excellent properties of which in terms of specific capacity, stability on cycling and rate capability will be presented. The coating of bare LFP particles with thin layers of this new Li-doped PANI allows surpassing the performance of commercial carbon coated LFP thick electrodes. The role of this PANI additive into millimetric thick electrodes of NMC material will also be discussed. Future developments of higher energy density Si-based Li-ion batteries depend on the mastering of side reactions at the Si anode. We will compare the SEI composition and morphology at the Si surface upon cycling in half cell and full Li-ion cell configurations using a combination of 7Li, 19F MAS NMR, XPS, TOF-SIMS and STEM-EELS. The origin of the much faster aging of Si-based full cells versus half cells and future directions for improvement will be discusse

    A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030+

    Get PDF
    This roadmap presents the transformational research ideas proposed by “BATTERY 2030+,” the European large-scale research initiative for future battery chemistries. A “chemistry-neutral” roadmap to advance battery research, particularly at low technology readiness levels, is outlined, with a time horizon of more than ten years. The roadmap is centered around six themes: 1) accelerated materials discovery platform, 2) battery interface genome, with the integration of smart functionalities such as 3) sensing and 4) self-healing processes. Beyond chemistry related aspects also include crosscutting research regarding 5) manufacturability and 6) recyclability. This roadmap should be seen as an enabling complement to the global battery roadmaps which focus on expected ultrahigh battery performance, especially for the future of transport. Batteries are used in many applications and are considered to be one technology necessary to reach the climate goals. Currently the market is dominated by lithium-ion batteries, which perform well, but despite new generations coming in the near future, they will soon approach their performance limits. Without major breakthroughs, battery performance and production requirements will not be sufficient to enable the building of a climate-neutral society. Through this “chemistry neutral” approach a generic toolbox transforming the way batteries are developed, designed and manufactured, will be created
    corecore