360 research outputs found

    Bumpy Spin-Down of Anomalous X-Ray Pulsars: The Link with Magnetars

    Get PDF
    The two anomalous X-ray pulsars (AXPs) with well-sampled timing histories, 1E 1048.1-5937 and 1E 2259+586, are known to spin down irregularly, with `bumps' superimposed on an overall linear trend. Here we show that if AXPs are non-accreting magnetars, i.e. isolated neutron stars with surface magnetic fields B_0 > 10^{10} T, then they spin down electromagnetically in exactly the manner observed, due to an effect called `radiative precession'. Internal hydromagnetic stresses deform the star, creating a fractional difference epsilon=(I_3-I_1)/I_1 ~ 10^{-8} between the principal moments of inertia I_1 and I_3; the resulting Eulerian precession couples to an oscillating component of the electromagnetic torque associated with the near-zone radiation fields, and the star executes an anharmonic wobble with period tau_pr ~ 2 pi / epsilon Omega(t) ~ 10 yr, where Omega(t) is the rotation frequency as a function of time t. We solve Euler's equations for a biaxial magnet rotating in vacuo; show that the computed Omega(t) matches the measured timing histories of 1E 1048.1-5937 and 1E 2259+586; predict Omega(t) for the next 20 years for both objects; predict a statistical relation between and tau_pr, to be tested as the population of known AXPs grows; and hypothesize that radiative precession will be observed in future X-ray timing of soft gamma-ray repeaters (SGRs).Comment: 9 pages, 2 figures, to be published in The Astrophysical Journal Letter

    Differences between the Two Anomalous X-Ray Pulsars: Variations in the Spin Down Rate of 1E 1048.1-5937 and An Extended Interval of Quiet Spin Down in 1E 2259+586

    Get PDF
    We analysed the RXTE archival data of 1E 1048.1-5937 covering a time span of more than one year. The spin down rate of this source decreases by 30 percent during the observation. We could not resolve the X-ray flux variations because of contamination by Eta Carinae. We find that the level of pulse frequency fluctuations of 1E 1048.1-5937 is consistent with typical noise levels of accretion powered pulsars. Recent RXTE observations of 1E 2259+586 have shown a constant spin down with a very low upper limit on timing noise. We used the RXTE archival X-ray observations of 1E 2259+586 to show that the intrinsic X-ray luminosity times series is also stable, with an rms fractional variation of less than 15 percent. The source could have been in a quiet phase of accretion with a constant X-ray luminosity and spin down rate.Comment: MNRAS in pres

    ROTSE observations of the young cluster IC 348

    Full text link
    CCD observations of stars in the young cluster IC 348 were obtained from 2004 August to 2005 January with a 0.45 m ROTSEIIId robotic reflecting telescope at the Turkish National Observatory site, Bakirlitepe, Turkey. The timing analysis of selected stars whose X-Ray counterpart were detected by Chandra X-Ray Observatory were studied. The time series of stars were searched for rotational periodicity by using different period search methods. 35 stars were found to be periodic with periods ranging from 0.74 to 32.3 days. Eighteen of the 35 periodic stars were new detections. Four of the new detections were CTTSs and the others were WTTSs and G type (or unknown spectral class) stars. In this study, we confirmed the stability of rotation periods of TTauri stars. The periods obtained by Cohen et al. and us were different by 1%. We also confirmed the 3.24 h pulsation period of H254 which is a delta Scuti type star as noted by Ripepi et al. but the other periods detected by them were not found. We examined correlation between X-ray luminosity and rotational period of our sample of TTSs. There is a decline in the rotational period with X-ray luminosity for late type TTSs.Comment: 15 pages, 14 figures, accepted for publication in Astronomical Journa

    Cylindrically Symmetric Vacuum Solutions in Higher Dimensional Brans-Dicke Theory

    Get PDF
    Higher dimensional, static, cylindrically symmetric vacuum solutions with and without a cosmological constant in the Brans-Dicke theory are presented. We show that, for a negative cosmological constant and for specific values of the parameters, a particular subclass of these solutions include higher dimensional topological black hole-type solutions with a flat horizon topology. We briefly extend our discussion to stationary vacuum and Λ\Lambda-vacuum solutions.Comment: V3: Published Versio

    Spin-down rate of 1E 2259+586 from RXTE observation

    Get PDF
    We present new X-ray observations of the X-ray pulsar 1E 2259+586, obtained during March 1997, with the Rossi X-Ray Timing Explorer (RXTE). We have measured the pulse frequency derivative ν˙=(1.08±0.04)×1014\dot \nu = (-1.08 \pm 0.04) \times 10^{-14} Hz s1^{-1} from pulse arrival times obtained in a sequence of 5 observations spread over one month. This ν˙\dot\nu is consistent with the long term spin-down trend. We also found that the observed X-ray luminosity is consistent with that measured at quiescent X-ray flux levels by previous missions. Our observations imply that 1E 2259+586 was spinning down steadily without exhibiting any stochastic torque noise fluctuations during the month covered by our observations.Comment: 4 pages, Latex (l-aa), Accepted for publication in Astronomy and Astrophysic

    Broad-band X-ray measurements of the black hole candidate XTE J1908+094

    Full text link
    XTE J1908+094 is an X-ray transient that went into outburst in February 2002. After two months it reached a 2-250 keV peak flux of 1 to 2 X 10-8 erg/s/cm2. Circumstantial evidence points to an accreting galactic black hole as the origin of the the X-radiation: pulsations nor thermonuclear flashes were detected that would identify a neutron star and the spectrum was unusually hard for a neutron star at the outburst onset. We report on BeppoSAX and RXTE All Sky Monitor observations of the broad-band spectrum of XTE J1908+094. The spectrum is consistent with a model consisting of a Comptonization component by a ~40 keV plasma (between 2 and 60 keV this component can be approximated by a power law with a photon index of 1.9 to 2.1), a multicolor accretion disk blackbody component with a temperature just below 1 keV and a broad emission line at about 6 keV. The spectrum is heavily absorbed by cold interstellar matter with an equivalent hydrogen column density of 2.5 X 10+22 cm-2, which makes it difficult to study the black body component in detail. The black body component exhibits strong evolution about 6 weeks into the outburst. Two weeks later this is followed by a swift decay of the power law component. The broadness of the 6 keV feature may be due to relativistic broadening or Compton scattering of a narrow Fe-K line.Comment: Accepted for publication in Astronomy & Astrophysic

    Accretion disk reversal and the spin-up/spin-down of accreting pulsars

    Full text link
    We numerically investigate the hydrodynamics of accretion disk reversal and relate our findings to the observed spin-rate changes in the accreting X-ray pulsar GX~1+4. In this system, which accretes from a slow wind, the accretion disk contains two dynamically distinct regions. In the inner part viscous forces are dominant and disk evolution occurs on a viscous timescale. In the outer part dynamical mixing of material with opposite angular momentum is more important, and the externally imposed angular momentum reversal timescale governs the flow. In this outer region the disk is split into concentric rings of material with opposite senses of rotation that do not mix completely but instead remain distinct, with a clear gap between them. We thus predict that torque reversals resulting from accretion disk reversals will be accompanied by minima in accretion luminosity.Comment: 13 pages, 7 figures, accepted for publication in Ap

    Recent X-ray measurements of the accretion-powered pulsar 4U 1907+09

    Get PDF
    X-ray observations of the accreting X-ray pulsar 4U~1907+09, obtained during February 1996 with the Proportional Counter Array on the Rossi X-ray Timing Experiment (RXTE), have enabled the first measurement of the intrinsic pulse period Ppulse since 1984: Ppulse=440.341[+0.012,-0.017] s. 4U 1907+09 is in a binary system with a blue supergiant. The orbital parameters were solved and this enabled the correction for orbital delay effects of a measurement of Ppulse obtained in 1990 with Ginga. Thus, three spin down rates could be extracted from four pulse periods obtained in 1983, 1984, 1990, and 1996. These are within 8% equal to a value of dPpulse/dt=+0.225 s/yr. This suggest that the pulsar is perhaps in a monotonous spin down mode since its discovery in 1983. Furthermore, the RXTE observations show transient ~18 s oscillations during a flare that lasted about 1 hour. The oscillations may be interpreted as Keplerian motion of an accretion disk near the magnetospheric radius. This, and the notion that the co-rotation radius is much larger than any conceivable value for the magnetospheric radius (because of the long spin period), renders it unlikely that this pulsar spins near equilibrium like is suspected for other slowing accreting X-ray pulsars. We suggest as an alternative that perhaps the frequent occurrence of a retrograde transient accretion disk may be consistently slowing the pulsar down. Further observations of flares can provide more evidence of this.Comment: 26 pages, 11 figures, to be published in Astrophysical Journal part I on March 20, 199

    Probing stellar winds and accretion physics in high-mass X-ray binaries and ultra-luminous X-ray sources with LOFT

    Get PDF
    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of high-mass X-ray binaries and ultra-luminous X-ray sources. For a summary, we refer to the paper.Comment: White Paper in Support of the Mission Concept of the Large Observatory for X-ray Timing. (v2 few typos corrected

    Higher Dimensional Cylindrical or Kasner Type Electrovacuum Solutions

    Full text link
    We consider a D dimensional Kasner type diagonal spacetime where metric functions depend only on a single coordinate and electromagnetic field shares the symmetries of spacetime. These solutions can describe static cylindrical or cosmological Einstein-Maxwell vacuum spacetimes. We mainly focus on electrovacuum solutions and four different types of solutions are obtained in which one of them has no four dimensional counterpart. We also consider the properties of the general solution corresponding to the exterior field of a charged line mass and discuss its several properties. Although it resembles the same form with four dimensional one, there is a difference on the range of the solutions for fixed signs of the parameters. General magnetic field vacuum solution are also briefly discussed, which reduces to Bonnor-Melvin magnetic universe for a special choice of the parameters. The Kasner forms of the general solution are also presented for the cylindrical or cosmological cases.Comment: 16 pages, Revtex. Text and references are extended, Published versio
    corecore