11 research outputs found

    Evaluation of approaches to generation of tissue-specific knock-in mice

    Get PDF

    The death receptor antagonist FAIM promotes neurite outgrowth by a mechanism that depends on ERK and NF-κB signaling

    Get PDF
    Fas apoptosis inhibitory molecule (FAIM) is a protein identified as an antagonist of Fas-induced cell death. We show that FAIM overexpression fails to rescue neurons from trophic factor deprivation, but exerts a marked neurite growth–promoting action in different neuronal systems. Whereas FAIM overexpression greatly enhanced neurite outgrowth from PC12 cells and sympathetic neurons grown with nerve growth factor (NGF), reduction of endogenous FAIM levels by RNAi decreased neurite outgrowth in these cells. FAIM overexpression promoted NF-κB activation, and blocking this activation by using a super-repressor IκBα or by carrying out experiments using cortical neurons from mice that lack the p65 NF-κB subunit prevented FAIM-induced neurite outgrowth. The effect of FAIM on neurite outgrowth was also blocked by inhibition of the Ras–ERK pathway. Finally, we show that FAIM interacts with both Trk and p75 neurotrophin receptor NGF receptors in a ligand-dependent manner. These results reveal a new function of FAIM in promoting neurite outgrowth by a mechanism involving activation of the Ras–ERK pathway and NF-κB

    The New Antitumor Drug ABTL0812 Inhibits the Akt/mTORC1 Axis by Upregulating Tribbles-3 Pseudokinase

    Full text link
    Purpose: ABTL0812 is a novel first-in-class, small molecule which showed antiproliferative effect on tumor cells in phenotypic assays. Here we describe the mechanism of action of this antitumor drug, which is currently in clinical development. Experimental design: We investigated the effect of ABTL0812 on cancer cell death, proliferation, and modulation of intracellular signaling pathways, using human lung (A549) and pancreatic (MiaPaCa-2) cancer cells and tumor xenografts. To identify cellular targets, we performed in silico high-throughput screening comparing ABTL0812 chemical structure against ChEMBL15 database. Results: ABTL0812 inhibited Akt/mTORC1 axis, resulting in impaired cancer cell proliferation and autophagy-mediated cell death. In silico screening led us to identify PPARs, PPARα and PPARγ as the cellular targets of ABTL0812. We showed that ABTL0812 activates both PPAR receptors, resulting in upregulation of Tribbles-3 pseudokinase (TRIB3) gene expression. Upregulated TRIB3 binds cellular Akt, preventing its activation by upstream kinases, resulting in Akt inhibition and suppression of the Akt/mTORC1 axis. Pharmacologic inhibition of PPARα/γ or TRIB3 silencing prevented ABTL0812-induced cell death. ABTL0812 treatment induced Akt inhibition in cancer cells, tumor xenografts, and peripheral blood mononuclear cells from patients enrolled in phase I/Ib first-in-human clinical trial. Conclusions: ABTL0812 has a unique and novel mechanism of action, that defines a new and drugable cellular route that links PPARs to Akt/mTORC1 axis, where TRIB3 pseudokinase plays a central role. Activation of this route (PPARα/γ-TRIB3-Akt-mTORC1) leads to autophagy-mediated cancer cell death. Given the low toxicity and high tolerability of ABTL0812, our results support further development of ABTL0812 as a promising anticancer therapy

    Hypomorphic mutation of PDK1 suppresses tumorigenesis in PTEN(+/-) mice

    Get PDF
    SummaryMany cancers possess elevated levels of PtdIns(3,4,5)P3, the second messenger that induces activation of the protein kinases PKB/Akt and S6K and thereby stimulates cell proliferation, growth, and survival [1, 2]. The importance of this pathway in tumorigenesis has been highlighted by the finding that PTEN, the lipid phosphatase that breaks down PtdIns(3,4,5)P3 to PtdIns(4,5)P2, is frequently mutated in human cancer [3, 4].Cells lacking PTEN possess elevated levels of PtdIns(3,4,5)P3, PKB, and S6K activity [5–8] and heterozygous PTEN+/− mice develop a variety of tumors [9–11]. Knockout of PKBα in PTEN-deficient cells reduces aggressive growth and promotes apoptosis [12], whereas treatment of PTEN+/− mice with rapamycin, an inhibitor of the activation of S6K, reduces neoplasia [13]. We explored the importance of PDK1, the protein kinase that activates PKB and S6K [14], in mediating tumorigenesis caused by the deletion of PTEN. We demonstrate that reducing the expression of PDK1 in PTEN+/− mice, markedly protects these animals from developing a wide range of tumors. Our findings provide genetic evidence that PDK1 is a key effector in mediating neoplasia resulting from loss of PTEN and also validate PDK1 as a promising anticancer target for the prevention of tumors that possess elevated PKB and S6K activity

    Phosphoinositide (3,4,5)-triphosphate binding to phosphoinositide-dependent kinase 1 regulates a protein kinase B/Akt signaling threshold that dictates T-cell migration, not proliferation

    No full text
    The present study explored the consequences of phosphoinositide (3,4,5)-triphosphate [PI(3,4,5)P3] binding to the pleckstrin homology (PH) domain of the serine/threonine kinase 3-phosphoinositide-dependent kinase 1 (PDK1). The salient finding is that PDK1 directly transduces the PI(3,4,5)P3 signaling that determines T-cell trafficking programs but not T-cell growth and proliferation. The integrity of the PDK1 PH domain thus is not required for PDK1 catalytic activity or to support cell survival and the proliferation of thymic and peripheral T cells. However, a PDK1 mutant that cannot bind PI(3,4,5)P3 cannot trigger the signals that terminate the expression of the transcription factor KLF2 in activated T cells and cannot switch the chemokine and adhesion receptor profile of naïve T cells to the profile of effector T cells. The PDK1 PH domain also is required for the maximal activation of Akt/protein kinase B (PKB) and for the maximal phosphorylation and inactivation of Foxo family transcription factors in T cells. PI(3,4,5)P3 binding to PDK1 and the strength of PKB activity thus can dictate the nature of the T-cell response. Low levels of PKB activity can be sufficient for T-cell proliferation but insufficient to initiate the migratory program of effector T cells

    Reducing the Levels of Akt Activation by PDK1 Knock-in Mutation Protects Neuronal Cultures against Synthetic Amyloid-Beta Peptides

    Get PDF
    The Akt kinase has been widely assumed for years as a key downstream effector of the PI3K signaling pathway in promoting neuronal survival. This notion was however challenged by the finding that neuronal survival responses were still preserved in mice with reduced Akt activity. Moreover, here we show that the Akt signaling is elevated in the aged brain of two different mice models of Alzheimer Disease. We manipulate the rate of Akt stimulation by employing knock-in mice expressing a mutant form of PDK1 (phosphoinositide-dependent protein kinase 1) with reduced, but not abolished, ability to activate Akt. We found increased membrane localization and activity of the TACE/ADAM17 α-secretase in the brain of the PDK1 mutant mice with concomitant TNFR1 processing, which provided neurons with resistance against TNFα-induced neurotoxicity. Opposite to the Alzheimer Disease transgenic mice, the PDK1 knock-in mice exhibited an age-dependent attenuation of the unfolding protein response, which protected the mutant neurons against endoplasmic reticulum stressors. Moreover, these two mechanisms cooperatively provide the mutant neurons with resistance against amyloid-beta oligomers, and might singularly also contribute to protect these mice against amyloid-beta pathology

    Activation of the cardiac mTOR/p70(S6K) pathway by leucine requires PDK1 and correlates with PRAS40 phosphorylation

    No full text
    Sanchez Canedo C, Demeulder B, Ginion A, Bayascas JR, Balligand JL, Alessi DR, Vanoverschelde JL, Beauloye C, Hue L, Bertrand L. Activation of the cardiac mTOR/p70(S6K) pathway by leucine requires PDK1 and correlates with PRAS40 phosphorylation. Am J Physiol Endocrinol Metab 298: E761-E769, 2010. First published January 5, 2010; doi:10.1152/ajpendo.00421.2009.-Like insulin, leucine stimulates the mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (p70(S6K)) axis in various organs. Insulin proceeds via the canonical association of phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent protein kinase-1 (PDK1), and protein kinase B (PKB/Akt). The signaling involved in leucine effect, although known to implicate a PI3K mechanism independent of PKB/Akt, is more poorly understood. In this study, we investigated whether PDK1 could also participate in the events leading to mTOR/p70(S6K) activation in response to leucine in the heart. In wild-type hearts, both leucine and insulin increased p70(S6K) activity whereas, in contrast to insulin, leucine was unable to activate PKB/Akt. The changes in p70(S6K) activity induced by insulin and leucine correlated with changes in phosphorylation of Thr(389), the mTOR phosphorylation site on p70(S6K), and of Ser(2448) on mTOR, both related to mTOR activity. Leucine also triggered phosphorylation of the proline-rich Akt/PKB substrate of 40 kDa (PRAS40), a new pivotal mTOR regulator. In PDK1 knockout hearts, leucine, similarly to insulin, failed to induce the phosphorylation of mTOR and p70(S6K), leading to the absence of p70(S6K) activation. The loss of leucine effect in absence of PDK1 correlated with the lack of PRAS40 phosphorylation. Moreover, the introduction in PDK1 of the L155E mutation, which is known to preserve the insulin-induced and PKB/Akt-dependent phosphorylation of mTOR/p70(S6K), suppressed all leucine effects, including phosphorylation of mTOR, PRAS40, and p70(S6K). We conclude that the leucine-induced stimulation of the cardiac PRAS40/mTOR/p70(S6K) pathway requires PDK1 in a way that differs from that of insulin

    Gossypol Treatment Restores Insufficient Apoptotic Function of DFF40/CAD in Human Glioblastoma Cells

    Get PDF
    Glioblastoma (GBM) is a highly aggressive brain tumor and almost all patients die because of relapses. GBM-derived cells undergo cell death without nuclear fragmentation upon treatment with different apoptotic agents. Nuclear dismantling determines the point-of-no-return in the apoptotic process. DFF40/CAD is the main endonuclease implicated in apoptotic nuclear disassembly. To be properly activated, DFF40/CAD should reside in the cytosol. However, the endonuclease is poorly expressed in the cytosol and remains cumulated in the nucleus of GBM cells. Here, by employing commercial and non-commercial patient-derived GBM cells, we demonstrate that the natural terpenoid aldehyde gossypol prompts DFF40/CAD-dependent nuclear fragmentation. A comparative analysis between gossypol- and staurosporine-treated cells evidenced that levels of neither caspase activation nor DNA damage were correlated with the ability of each compound to induce nuclear fragmentation. Deconvoluted confocal images revealed that DFF40/CAD was almost completely excluded from the nucleus early after the staurosporine challenge. However, gossypol-treated cells maintained DFF40/CAD in the nucleus for longer times, shaping a ribbon-like structure piercing the nuclear fragments and building a network of bridged masses of compacted chromatin. Therefore, GBM cells can fragment their nuclei if treated with the adequate insult, making the cell death process irreversible
    corecore