345 research outputs found

    Metal-Metal Cooperation in the Oxidation of a Flapping Platinum Butterfly by Haloforms: Experimental and Theoretical Evidence

    Get PDF
    The model 1-DFT for the butterfly complex [{Pt(C¿C*)(µ-pz)}2] (1; HC¿C* = 1-(4-(ethoxycarbonyl)phenyl)-3-methyl-1H-imidazol-2-ylidene) shows two minima in the potential energy surface of the ground state in acetone solution: the butterfly-wing-spreading molecules 1-s, (dPt-Pt ˜ 3.20 Å) and the wing-folding molecules 1-f (dPt-Pt = 3.00 Å). Both minima are very close in energy (¿G° = 1.7 kcal/mol) and are connected through a transition state, which lies only 1.9 kcal/mol above 1-s and 0.2 kcal/mol above 1-f. These very low barriers support a fast interconversion process, resembling a butterfly flapping, and the presence of both conformers in acetone solution. However, the 1-f ratio is so low that it is undetectable in the excitation and emission spectra of 1 in 2-MeTHF of diluted solutions (10-5 M) at 77 K, while it is seen in more concentrated solutions (10-3 M). In acetone solution, 1 undergoes a [2c, 2e] oxidation by CHX3 (X = Cl, Br) in the sunlight to render the Pt2(III, III) compounds [{Pt(C¿C*)(µ-pz)X)}2] (X = Cl (2-Cl), Br (2-Br)). In concentrated solutions, 1 can react with CHCl3 under blue light to give 2-Cl and with CHBr3 in the dark, the latter rendering the compound [BrPt(C¿C*)(µ-pz)2Pt(C¿C*)CHBr2] (3-Br) or mixtures of 2-Br and 3-Br if the reaction is performed under an argon atmosphere or in the air, respectively. Mechanistic studies showed that in concentrated solutions the oxidation processes follow a radical mechanism being the MMLCT-based species 1-f, those which trigger the reaction of 1 with CHBr3 and CHCl3. In the ground state (S0f), it promotes the thermal oxidation of 1 by CHBr3 and in the first singlet excited state (S1f) the blue-light-driven photooxidation of 1 by CHCl3. Complexes, 2-Cl, 2-Br, and 3-Br were selectively obtained and fully characterized, showing Pt-Pt distances (ca. 2.6 Å) shorter than that of the starting complex, 1. They are, together with the analogous [{Pt(C¿C*)(µ-pz)I)}2] and [IPt(C¿C*)(µ-pz)2Pt(C¿C*)CHI2], the only dinuclear metal-metal-bonded PtIII(µ-pz)2PtIII compounds reported to date

    GlcNAcstatins are nanomolar inhibitors of human O-GlcNAcase inducing cellular hyper-O-GlcNAcylation

    Get PDF
    O-GlcNAcylation is an essential, dynamic and inducible post-translational glycosylation of cytosolic proteins in metazoa and can show interplay with protein phosphorylation. Inhibition of OGA (O-GlcNAcase), the enzyme that removes O-GlcNAc from O-GlcNAcylated proteins, is a useful strategy to probe the role of this modification in a range of cellular processes. In the present study, we report the rational design and evaluation of GlcNAcstatins, a family of potent, competitive and selective inhibitors of human OGA. Kinetic experiments with recombinant human OGA reveal that the GlcNAcstatins are the most potent human OGA inhibitors reported to date, inhibiting the enzyme in the sub-nanomolar to nanomolar range. Modification of the GlcNAcstatin N-acetyl group leads to up to 160-fold selectivity against the human lysosomal hexosaminidases which employ a similar substrate-assisted catalytic mechanism. Mutagenesis studies in a bacterial OGA, guided by the structure of a GlcNAcstatin complex, provides insight into the role of conserved residues in the human OGA active site. GlcNAcstatins are cell-permeant and, at low nanomolar concentrations, effectively modulate intracellular O-GlcNAc levels through inhibition of OGA, in a range of human cell lines. Thus these compounds are potent selective tools to study the cell biology of O-GlcNAc

    Ruthenium molecular complexes immobilized on graphene as active catalysts for the synthesis of carboxylic acids from alcohol dehydrogenation

    Get PDF
    Ruthenium complexes containing N-heterocyclic carbene ligands functionalized with different polyaromatic groups (pentafluorophenyl, anthracene, and pyrene) are immobilized onto the surface of reduced graphene oxide. The hybrid materials composed of organometallic complexes and graphene are obtained in a single-step process. The hybrid materials are efficient catalysts for the synthesis of carboxylic acids from the dehydrogenation of alcohols in aqueous media. The catalytic materials can be recycled up to ten times without significant loss of activity. The catalytic activity of the pyrene derivative, Pyr-Ru (3) is enhanced when the ruthenium complex is anchored onto the surface of graphene. The carbonaceous material limits the degradation of the ruthenium complex resulting in increased activity and requiring lower catalyst loadings. The catalytic process of the pyrene hybrid material is heterogeneous in nature due to the strong interaction between the pyrene and graphene. The catalytic process of the anthracene and pentafluorophenyl hybrid materials is governed by the so-called ‘boomerang effect’. The ruthenium molecular complex is released from and returned to the graphene surface during the catalytic reaction. Mechanistic insight has been obtained experimentally and theoretically. The energy profile suggests that the rate-determining step is the water nucleophilic attack to a coordinated aldehyde complex to form a gem-diolate complex.The authors thank the financial support from MINECO (CTQ2015-69153-C2-2-R and CTQ2015- 67461-P), Generalitat Valenciana (AICO/2015/039), Universitat Jaume I (P1.1B2015-09) and Universidad de Zaragoza (UZ2014-CIE-01)

    Iridium complexes catalysed the selective dehydrogenation of glucose to gluconic acid in water

    Get PDF
    [EN] We describe an unprecedented catalytic dehydrogenation of glucose by homogeneous catalysts. Iridium(iii) complexes containing the fragment [Cp*Ir(NHC)](2+) (NHC = N-heterocyclic carbene ligand) are shown to be very active and highly selective catalysts for the dehydrogenation of glucose to gluconic acid and molecular hydrogen. Glucose is converted to gluconic acid at a catalyst loading of 2 mol%, at reflux in water, without additives and with a selectivity of over 95%. Experimental evidence obtained by H-1 NMR spectroscopy and mass spectrometry (ESI/MS) reveals the formation of iridium coordinated to glucose and gluconic acid species. A plausible mechanism is proposed, based on the experimental evidence and supported by DFT calculations.The authors thank the MINECO (Severo Ochoa, CTQ2015-69153-C2-1-R, CTQ2015-69153-C2-2-R and CTQ2015-67461-P), Diputacion General de Aragon (Grupo Consolidado E21) and Universitat Jaume I (P1.1B2015-09) for financial support. P. Borja thanks the Universitat Jaume I for a postdoctoral grant. The authors are very grateful to the 'Serveis Centrals d'Instrumentacio Cientifica (SCIC)' of the Universitat Jaume I, S. Fuertes (Universidad of Zaragoza) for data collection of the X-ray structure of 4 and to the Instituto de Biocomputacion y Fisica de Sistemas Complejos (BIFI) and the Centro de Supercomputacion de Galicia (CESGA) for the generous allocation of computational resources.Borja, P.; Vicent, C.; Baya, M.; García Gómez, H.; Mata, JA. (2018). Iridium complexes catalysed the selective dehydrogenation of glucose to gluconic acid in water. Green Chemistry. 20(17):4094-4101. https://doi.org/10.1039/c8gc01933aS409441012017Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989dBesson, M., Gallezot, P., & Pinel, C. (2013). Conversion of Biomass into Chemicals over Metal Catalysts. Chemical Reviews, 114(3), 1827-1870. doi:10.1021/cr4002269Sheldon, R. A. (2014). Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem., 16(3), 950-963. doi:10.1039/c3gc41935eMika, L. T., Cséfalvay, E., & Németh, Á. (2017). Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chemical Reviews, 118(2), 505-613. doi:10.1021/acs.chemrev.7b00395Climent, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639dCliment, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chem. Soc. Rev., 41(4), 1538-1558. doi:10.1039/c1cs15147aMakhubela, B. C. E., & Darkwa, J. (2018). The Role of Noble Metal Catalysts in Conversion of Biomass and Bio-derived Intermediates to Fuels and Chemicals. Johnson Matthey Technology Review, 62(1), 4-31. doi:10.1595/205651317x696261Gallezot, P. (2008). Catalytic Conversion of Biomass: Challenges and Issues. ChemSusChem, 1(8-9), 734-737. doi:10.1002/cssc.200800091Geilen, F. M. A., Engendahl, B., Harwardt, A., Marquardt, W., Klankermayer, J., & Leitner, W. (2010). Selective and Flexible Transformation of Biomass-Derived Platform Chemicals by a Multifunctional Catalytic System. Angewandte Chemie International Edition, 49(32), 5510-5514. doi:10.1002/anie.201002060Mirescu, A., Berndt, H., Martin, A., & Prüße, U. (2007). Long-term stability of a 0.45% Au/TiO2 catalyst in the selective oxidation of glucose at optimised reaction conditions. Applied Catalysis A: General, 317(2), 204-209. doi:10.1016/j.apcata.2006.10.016BAATZ, C., & PRUSE, U. (2007). Preparation of gold catalysts for glucose oxidation by incipient wetness. Journal of Catalysis, 249(1), 34-40. doi:10.1016/j.jcat.2007.03.026Önal, Y. (2004). Structure sensitivity and kinetics of ?-glucose oxidation to ?-gluconic acid over carbon-supported gold catalysts. Journal of Catalysis, 223(1), 122-133. doi:10.1016/j.jcat.2004.01.010Biella, S., Prati, L., & Rossi, M. (2002). Selective Oxidation of D-Glucose on Gold Catalyst. Journal of Catalysis, 206(2), 242-247. doi:10.1006/jcat.2001.3497Gallezot, P. (2007). Process options for converting renewable feedstocks to bioproducts. Green Chemistry, 9(4), 295. doi:10.1039/b615413aBalaraman, E., Khaskin, E., Leitus, G., & Milstein, D. (2013). Catalytic transformation of alcohols to carboxylic acid salts and H2 using water as the oxygen atom source. Nature Chemistry, 5(2), 122-125. doi:10.1038/nchem.1536Zweifel, T., Naubron, J.-V., & Grützmacher, H. (2009). Catalyzed Dehydrogenative Coupling of Primary Alcohols with Water, Methanol, or Amines. Angewandte Chemie International Edition, 48(3), 559-563. doi:10.1002/anie.200804757Fujita, K., Tamura, R., Tanaka, Y., Yoshida, M., Onoda, M., & Yamaguchi, R. (2017). Dehydrogenative Oxidation of Alcohols in Aqueous Media Catalyzed by a Water-Soluble Dicationic Iridium Complex Bearing a Functional N-Heterocyclic Carbene Ligand without Using Base. ACS Catalysis, 7(10), 7226-7230. doi:10.1021/acscatal.7b02560Brewster, T. P., Ou, W. C., Tran, J. C., Goldberg, K. I., Hanson, S. K., Cundari, T. R., & Heinekey, D. M. (2014). Iridium, Rhodium, and Ruthenium Catalysts for the «Aldehyde–Water Shift» Reaction. ACS Catalysis, 4(9), 3034-3038. doi:10.1021/cs500843aDobereiner, G. E., Yuan, J., Schrock, R. R., Goldman, A. S., & Hackenberg, J. D. (2013). Catalytic Synthesis of n-Alkyl Arenes through Alkyl Group Cross-Metathesis. Journal of the American Chemical Society, 135(34), 12572-12575. doi:10.1021/ja4066392Choi, J., MacArthur, A. H. R., Brookhart, M., & Goldman, A. S. (2011). Dehydrogenation and Related Reactions Catalyzed by Iridium Pincer Complexes. Chemical Reviews, 111(3), 1761-1779. doi:10.1021/cr1003503Wang, C., & Xiao, J. (2017). Iridacycles for hydrogenation and dehydrogenation reactions. Chemical Communications, 53(24), 3399-3411. doi:10.1039/c7cc01103bWang, X., Wang, C., Liu, Y., & Xiao, J. (2016). Acceptorless dehydrogenation and aerobic oxidation of alcohols with a reusable binuclear rhodium(ii) catalyst in water. Green Chemistry, 18(17), 4605-4610. doi:10.1039/c6gc01272hSawama, Y., Morita, K., Yamada, T., Nagata, S., Yabe, Y., Monguchi, Y., & Sajiki, H. (2014). Rhodium-on-carbon catalyzed hydrogen scavenger- and oxidant-free dehydrogenation of alcohols in aqueous media. Green Chemistry, 16(7), 3439. doi:10.1039/c4gc00434eRobbins, D. W., & Hartwig, J. F. (2011). A Simple, Multidimensional Approach to High-Throughput Discovery of Catalytic Reactions. Science, 333(6048), 1423-1427. doi:10.1126/science.1207922Da Vià, L., Recchi, C., Davies, T. E., Greeves, N., & Lopez‐Sanchez, J. A. (2016). Visible‐Light‐Controlled Oxidation of Glucose using Titania‐Supported Silver Photocatalysts. ChemCatChem, 8(22), 3475-3483. doi:10.1002/cctc.201600775Da Vià, L., Recchi, C., Gonzalez-Yañez, E. O., Davies, T. E., & Lopez-Sanchez, J. A. (2017). Visible light selective photocatalytic conversion of glucose by TiO2. Applied Catalysis B: Environmental, 202, 281-288. doi:10.1016/j.apcatb.2016.08.035Monge, M. E., Pérez, J. J., Dwivedi, P., Zhou, M., McCarty, N. A., Stecenko, A. A., & Fernández, F. M. (2013). Ion mobility and liquid chromatography/mass spectrometry strategies for exhaled breath condensate glucose quantitation in cystic fibrosis studies. Rapid Communications in Mass Spectrometry, 27(20), 2263-2271. doi:10.1002/rcm.6683Sandín-España, P., Mateo-Miranda, M., López-Goti, C., De Cal, A., & Alonso-Prados, J. L. (2016). Development of a rapid and direct method for the determination of organic acids in peach fruit using LC–ESI-MS. Food Chemistry, 192, 268-273. doi:10.1016/j.foodchem.2015.07.012Bodachivskyi, I., Kuzhiumparambil, U., & Williams, D. B. G. (2018). Acid-Catalyzed Conversion of Carbohydrates into Value-Added Small Molecules in Aqueous Media and Ionic Liquids. ChemSusChem, 11(4), 642-660. doi:10.1002/cssc.201702016Csabai, P., & Joó, F. (2004). Synthesis and Catalytic Properties of New Water-Soluble Ruthenium(II)−N-Heterocyclic Carbene Complexes. Organometallics, 23(23), 5640-5643. doi:10.1021/om049511aBellarosa, L., Díez, J., Gimeno, J., Lledós, A., Suárez, F. J., Ujaque, G., & Vicent, C. (2012). Highly Efficient Redox Isomerisation of Allylic Alcohols Catalysed by Pyrazole-Based Ruthenium(IV) Complexes in Water: Mechanisms of Bifunctional Catalysis in Water. Chemistry - A European Journal, 18(25), 7749-7765. doi:10.1002/chem.201103374Schröder, D. (2012). Applications of Electrospray Ionization Mass Spectrometry in Mechanistic Studies and Catalysis Research. Accounts of Chemical Research, 45(9), 1521-1532. doi:10.1021/ar3000426Vikse, K. L., Ahmadi, Z., & Scott McIndoe, J. (2014). The application of electrospray ionization mass spectrometry to homogeneous catalysis. Coordination Chemistry Reviews, 279, 96-114. doi:10.1016/j.ccr.2014.06.012Yunker, L. P. E., Stoddard, R. L., & McIndoe, J. S. (2014). Practical approaches to the ESI-MS analysis of catalytic reactions. Journal of Mass Spectrometry, 49(1), 1-8. doi:10.1002/jms.3303Kawahara, R., Fujita, K., & Yamaguchi, R. (2012). Dehydrogenative Oxidation of Alcohols in Aqueous Media Using Water-Soluble and Reusable Cp*Ir Catalysts Bearing a Functional Bipyridine Ligand. Journal of the American Chemical Society, 134(8), 3643-3646. doi:10.1021/ja210857zTrincado, M., Banerjee, D., & Grützmacher, H. (2014). Molecular catalysts for hydrogen production from alcohols. Energy Environ. Sci., 7(8), 2464-2503. doi:10.1039/c4ee00389fLi, H., & Hall, M. B. (2013). Mechanism of the Formation of Carboxylate from Alcohols and Water Catalyzed by a Bipyridine-Based Ruthenium Complex: A Computational Study. Journal of the American Chemical Society, 136(1), 383-395. doi:10.1021/ja410541vRodríguez-Lugo, R. E., Trincado, M., Vogt, M., Tewes, F., Santiso-Quinones, G., & Grützmacher, H. (2013). A homogeneous transition metal complex for clean hydrogen production from methanol–water mixtures. Nature Chemistry, 5(4), 342-347. doi:10.1038/nchem.1595Vicent, C., & Gusev, D. G. (2016). ESI-MS Insights into Acceptorless Dehydrogenative Coupling of Alcohols. ACS Catalysis, 6(5), 3301-3309. doi:10.1021/acscatal.6b00623Spasyuk, D., Vicent, C., & Gusev, D. G. (2015). Chemoselective Hydrogenation of Carbonyl Compounds and Acceptorless Dehydrogenative Coupling of Alcohols. Journal of the American Chemical Society, 137(11), 3743-3746. doi:10.1021/ja512389

    Differential Responses of Bird Species to Habitat Condition in a Coastal Kenyan Forest Reserve: Implications for Conservation

    Get PDF
    The management of assemblages of species across many taxa is a common concern in conservation. Consequently, the use of one or a few surrogate or indicator species to represent an entire assemblage has become an increasingly important tool in conservation science. However, conservation schemes based on the needs of one or two focal species often fail to account for individualistic responses of larger assemblages of species. Data from bird point counts along with vegetation characteristics from a coastal tropical dry forest in Kenya that is subject to elephant disturbance were used to explore the differential responses of bird species to environmental conditions in a forest reserve where wildlife management includes both endangered birds and mammals. Results revealed that even birds with similar foraging habits had idiosyncratic responses to both environmental traits and elephant disturbance. While overall species responded to important characteristics such as percent canopy cover and leaf litter depth, individualistic responses of different species trait diversity defied easy characterization of optimal forest management schemes. Taken together, our analyses highlight the difficulty in basing the development of management plans for entire assemblages of species on the response of a single or a few species. Implications for wildlife conservation in Arabuko-Sokoke Forest and similar forest reserves are discussed, emphasizing the need for a better understanding of individual species’ responses to forest conditions

    Field Sampling and Necropsy Examination of Fish

    Get PDF
    This paper presents an overview of observational and fish sampling tech­niques for investigating fish lesions, morbidity and mortality. These sam­pling techniques and investigations are much like detective work and require attention to detail, common sense, technical proficiency and experience. To solve the mystery of a fish kill, the investigator must use available evidence and clues to piece together a series of events that often have long since passed. The cause of these field events may be chemical, biological or physical; more often, it is some combination of these. An initial categorization approach may be used to reduce the great number of possible causes of a fish kill to something more reasonable. Through proper observations, the most probable cause may be placed in one of four broad categories (although additional secondary relationships should also be recognized). These broad categories include oxygen related, toxics or water quality related, disease or population related and trauma related events, and may be based on defined criteria Caution should be taken on making etiologic generaliz.ations since many types of lesions or mortality events may appear similar. This paper provides support for making consistent observations; taking photographs, tissue and water samples; classifying external lesions and choosing appropriate ne­cropsy methods. A bibliography is provided to reference information perti­nent to fish kill investigations and fish disease, anatomy and taxonomy

    Catalytic Dehydrogenative Coupling of Hydrosilanes with Alcohols for the Production of Hydrogen On-demand: Application of a Silane/Alcohol Pair as a Liquid Organic Hydrogen Carrier

    Get PDF
    The compound [Ru(p-cym)(Cl)2(NHC)] is an effective catalyst for the room-temperature coupling of silanes and alcohols with the concomitant formation of molecular hydrogen. High catalyst activity is observed for a variety of substrates affording quantitative yields in minutes at room temperature and with a catalyst loading as low as 0.1 mol %. The coupling reaction is thermodynamically and, in the presence of a Ru complex, kinetically favourable and allows rapid molecular hydrogen generation on-demand at room temperature, under air, and without any additive. The pair silane/alcohol is a potential liquid organic hydrogen carrier (LOHC) for energy storage over long periods in a safe and secure way. Silanes and alcohols are non-toxic compounds and do not require special handling precautions such as high pressure or an inert atmosphere. These properties enhance the practical applications of the pair silane/alcohol as a good LOHC in the automotive industry. The variety and availability of silanes and alcohols permits a pair combination that fulfils the requirements for developing an efficient LOHC

    Electrophilicity of neutral square-planar organosilver(III) compounds

    Get PDF
    Neutral Ag(III) complexes stabilised with just monodentate ligands are here unambiguously established. In a series of square-planar (CF3)3Ag(L) compounds with hard and soft Group 15 donor ligands, L, the metal center has been found to exhibit substantial acidity favouring apical coordination of an additional ligand under no coordination constraints
    corecore