8,125 research outputs found

    Bethe Equations "on the Wrong Side of Equator"

    Get PDF
    We analyse the famous Baxter's TQT-Q equations for XXXXXX (XXZXXZ) spin chain and show that apart from its usual polynomial (trigonometric) solution, which provides the solution of Bethe-Ansatz equations, there exists also the second solution which should corresponds to Bethe-Ansatz beyond N/2N/2. This second solution of Baxter's equation plays essential role and together with the first one gives rise to all fusion relations.Comment: 13 pages, original paper was spoiled during transmissio

    Tetromino tilings and the Tutte polynomial

    Get PDF
    We consider tiling rectangles of size 4m x 4n by T-shaped tetrominoes. Each tile is assigned a weight that depends on its orientation and position on the lattice. For a particular choice of the weights, the generating function of tilings is shown to be the evaluation of the multivariate Tutte polynomial Z\_G(Q,v) (known also to physicists as the partition function of the Q-state Potts model) on an (m-1) x (n-1) rectangle G, where the parameter Q and the edge weights v can take arbitrary values depending on the tile weights.Comment: 8 pages, 6 figure

    General scalar products in the arbitrary six-vertex model

    Full text link
    In this work we use the algebraic Bethe ansatz to derive the general scalar product in the six-vertex model for generic Boltzmann weights. We performed this calculation using only the unitarity property, the Yang-Baxter algebra and the Yang-Baxter equation. We have derived a recurrence relation for the scalar product. The solution of this relation was written in terms of the domain wall partition functions. By its turn, these partition functions were also obtained for generic Boltzmann weights, which provided us with an explicit expression for the general scalar product.Comment: 24 page

    Exact clesed form of the return probability on the Bethe lattice

    Full text link
    An exact closed form solution for the return probability of a random walk on the Bethe lattice is given. The long-time asymptotic form confirms a previously known expression. It is however shown that this exact result reduces to the proper expression when the Bethe lattice degenerates on a line, unlike the asymptotic result which is singular. This is shown to be an artefact of the asymptotic expansion. The density of states is also calculated.Comment: 7 pages, RevTex 3.0, 2 figures available upon request from [email protected], to be published in J.Phys.A Let

    A Potts/Ising Correspondence on Thin Graphs

    Full text link
    We note that it is possible to construct a bond vertex model that displays q-state Potts criticality on an ensemble of phi3 random graphs of arbitrary topology, which we denote as ``thin'' random graphs in contrast to the fat graphs of the planar diagram expansion. Since the four vertex model in question also serves to describe the critical behaviour of the Ising model in field, the formulation reveals an isomorphism between the Potts and Ising models on thin random graphs. On planar graphs a similar correspondence is present only for q=1, the value associated with percolation.Comment: 6 pages, 5 figure

    Avalanche Collapse of Interdependent Network

    Full text link
    We reveal the nature of the avalanche collapse of the giant viable component in multiplex networks under perturbations such as random damage. Specifically, we identify latent critical clusters associated with the avalanches of random damage. Divergence of their mean size signals the approach to the hybrid phase transition from one side, while there are no critical precursors on the other side. We find that this discontinuous transition occurs in scale-free multiplex networks whenever the mean degree of at least one of the interdependent networks does not diverge.Comment: 4 pages, 5 figure

    A nested sequence of projectors (2): Multiparameter multistate statistical models, Hamiltonians, S-matrices

    Full text link
    Our starting point is a class of braid matrices, presented in a previous paper, constructed on a basis of a nested sequence of projectors. Statistical models associated to such N2×N2N^2\times N^2 matrices for odd NN are studied here. Presence of 12(N+3)(N1)\frac 12(N+3)(N-1) free parameters is the crucial feature of our models, setting them apart from other well-known ones. There are NN possible states at each site. The trace of the transfer matrix is shown to depend on 12(N1)\frac 12(N-1) parameters. For order rr, NN eigenvalues consitute the trace and the remaining (NrN)(N^r-N) eigenvalues involving the full range of parameters come in zero-sum multiplets formed by the rr-th roots of unity, or lower dimensional multiplets corresponding to factors of the order rr when rr is not a prime number. The modulus of any eigenvalue is of the form eμθe^{\mu\theta}, where μ\mu is a linear combination of the free parameters, θ\theta being the spectral parameter. For rr a prime number an amusing relation of the number of multiplets with a theorem of Fermat is pointed out. Chain Hamiltonians and potentials corresponding to factorizable SS-matrices are constructed starting from our braid matrices. Perspectives are discussed.Comment: 32 pages, no figure, few mistakes are correcte

    A tree-decomposed transfer matrix for computing exact Potts model partition functions for arbitrary graphs, with applications to planar graph colourings

    Get PDF
    Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q colours) for large samples of random planar graphs with up to N=100 vertices. In the latter case, our algorithm yields a sub-exponential average running time of ~ exp(1.516 sqrt(N)), a substantial improvement over the exponential running time ~ exp(0.245 N) provided by the hitherto best known algorithm. We study the statistics of chromatic roots of random planar graphs in some detail, comparing the findings with results for finite pieces of a regular lattice.Comment: 5 pages, 3 figures. Version 2 has been substantially expanded. Version 3 shows that the worst-case running time is sub-exponential in the number of vertice

    Star-Triangle Relation for a Three Dimensional Model

    Full text link
    The solvable sl(n)sl(n)-chiral Potts model can be interpreted as a three-dimensional lattice model with local interactions. To within a minor modification of the boundary conditions it is an Ising type model on the body centered cubic lattice with two- and three-spin interactions. The corresponding local Boltzmann weights obey a number of simple relations, including a restricted star-triangle relation, which is a modified version of the well-known star-triangle relation appearing in two-dimensional models. We show that these relations lead to remarkable symmetry properties of the Boltzmann weight function of an elementary cube of the lattice, related to spatial symmetry group of the cubic lattice. These symmetry properties allow one to prove the commutativity of the row-to-row transfer matrices, bypassing the tetrahedron relation. The partition function per site for the infinite lattice is calculated exactly.Comment: 20 pages, plain TeX, 3 figures, SMS-079-92/MRR-020-92. (corrupted figures replaced

    Hopping on the Bethe lattice: Exact results for densities of states and dynamical mean-field theory

    Get PDF
    We derive an operator identity which relates tight-binding Hamiltonians with arbitrary hopping on the Bethe lattice to the Hamiltonian with nearest-neighbor hopping. This provides an exact expression for the density of states (DOS) of a non-interacting quantum-mechanical particle for any hopping. We present analytic results for the DOS corresponding to hopping between nearest and next-nearest neighbors, and also for exponentially decreasing hopping amplitudes. Conversely it is possible to construct a hopping Hamiltonian on the Bethe lattice for any given DOS. These methods are based only on the so-called distance regularity of the infinite Bethe lattice, and not on the absence of loops. Results are also obtained for the triangular Husimi cactus, a recursive lattice with loops. Furthermore we derive the exact self-consistency equations arising in the context of dynamical mean-field theory, which serve as a starting point for studies of Hubbard-type models with frustration.Comment: 14 pages, 9 figures; introduction expanded, references added; published versio
    corecore