The solvable sl(n)-chiral Potts model can be interpreted as a
three-dimensional lattice model with local interactions. To within a minor
modification of the boundary conditions it is an Ising type model on the body
centered cubic lattice with two- and three-spin interactions. The corresponding
local Boltzmann weights obey a number of simple relations, including a
restricted star-triangle relation, which is a modified version of the
well-known star-triangle relation appearing in two-dimensional models. We show
that these relations lead to remarkable symmetry properties of the Boltzmann
weight function of an elementary cube of the lattice, related to spatial
symmetry group of the cubic lattice. These symmetry properties allow one to
prove the commutativity of the row-to-row transfer matrices, bypassing the
tetrahedron relation. The partition function per site for the infinite lattice
is calculated exactly.Comment: 20 pages, plain TeX, 3 figures, SMS-079-92/MRR-020-92. (corrupted
figures replaced