9,389 research outputs found

    Gaudin Hypothesis for the XYZ Spin Chain

    Full text link
    The XYZ spin chain is considered in the framework of the generalized algebraic Bethe ansatz developed by Takhtajan and Faddeev. The sum of norms of the Bethe vectors is computed and expressed in the form of a Jacobian. This result corresponds to the Gaudin hypothesis for the XYZ spin chain.Comment: 12 pages, LaTeX2e (+ amssymb, amsthm); to appear in J. Phys.

    Selfduality for coupled Potts models on the triangular lattice

    Get PDF
    We present selfdual manifolds for coupled Potts models on the triangular lattice. We exploit two different techniques: duality followed by decimation, and mapping to a related loop model. The latter technique is found to be superior, and it allows to include three-spin couplings. Starting from three coupled models, such couplings are necessary for generating selfdual solutions. A numerical study of the case of two coupled models leads to the identification of novel critical points

    Conformal invariance studies of the Baxter-Wu model and a related site-colouring problem

    Full text link
    The partition function of the Baxter-Wu model is exactly related to the generating function of a site-colouring problem on a hexagonal lattice. We extend the original Bethe ansatz solution of these models in order to obtain the eigenspectra of their transfer matrices in finite geometries and general toroidal boundary conditions. The operator content of these models are studied by solving numerically the Bethe-ansatz equations and by exploring conformal invariance. Since the eigenspectra are calculated for large lattices, the corrections to finite-size scaling are also calculated.Comment: 12 pages, latex, to appear in J. Phys. A: Gen. Mat

    Barriers and enablers to engagement in participatory arts activities amongst individuals with depression and anxiety: quantitative analyses using a behaviour change framework.

    Get PDF
    Background There is a large literature on the health benefits of engagement with the arts. However, there are also well-recognised challenges in ensuring equity of engagement with these activities. Specifically, it remains unclear whether individuals with poor mental health experience more barriers to participation. This study used a behaviour change framework to explore barriers to engagement in participatory arts activities amongst people with either depression or anxiety. Methods Data were drawn from a large citizen science experiment focused on participation in creative activities. Participants who reported engaging infrequently in performing arts, visual arts, design and crafts, literature-related activities, and online, digital and electronic arts were included and categorised into no mental health problems (n = 1851), depression but not anxiety (n = 873) and anxiety but not depression (n = 808). Barriers and enablers to engagement were measured using an 18-item scale based on the COM-B Self-Evaluation Questionnaire, with subscales assessing psychological and physical capabilities, social and physical opportunities, and automatic and reflective motivations. Logistic regression analyses were used to identify whether individuals with either depression or anxiety reported greater barriers across any of the six domains than individuals without any mental health problems. Where differences were found, we calculated the percentage of protective association explained by various demographic, socio-economic, social, physical or geographical factors. Results Individuals with depression and anxiety felt they would be more likely to engage in arts activities if they had greater psychological and physical capabilities, more social opportunities, and stronger automatic and reflective motivations to engage. However, they did not feel that more physical opportunities would affect their engagement. Covariates explained only 8–37% of the difference in response amongst those with and without anxiety and depression. Conclusions Findings suggest that for individuals with poor mental health, there are certain barriers to participation that are not felt as strongly by those without any mental health problems. Mapping the behaviour change domains to potential interventions, activities that focus on increasing perceived capabilities, providing social opportunities, and reinforcing both automatic and reflective motivations to engage has the potential to help to redress the imbalance in arts participation amongst those with poor mental health

    Non-nequilibrium model on Apollonian networks

    Full text link
    We investigate the Majority-Vote Model with two states (−1,+1-1,+1) and a noise qq on Apollonian networks. The main result found here is the presence of the phase transition as a function of the noise parameter qq. We also studies de effect of redirecting a fraction pp of the links of the network. By means of Monte Carlo simulations, we obtained the exponent ratio γ/ν\gamma/\nu, β/ν\beta/\nu, and 1/ν1/\nu for several values of rewiring probability pp. The critical noise was determined qcq_{c} and U∗U^{*} also was calculated. The effective dimensionality of the system was observed to be independent on pp, and the value Deff≈1.0D_{eff} \approx1.0 is observed for these networks. Previous results on the Ising model in Apollonian Networks have reported no presence of a phase transition. Therefore, the results present here demonstrate that the Majority-Vote Model belongs to a different universality class as the equilibrium Ising Model on Apollonian Network.Comment: 5 pages, 5 figure

    Mechanisms of kinetic trapping in self-assembly and phase transformation

    Get PDF
    In self-assembly processes, kinetic trapping effects often hinder the formation of thermodynamically stable ordered states. In a model of viral capsid assembly and in the phase transformation of a lattice gas, we show how simulations in a self-assembling steady state can be used to identify two distinct mechanisms of kinetic trapping. We argue that one of these mechanisms can be adequately captured by kinetic rate equations, while the other involves a breakdown of theories that rely on cluster size as a reaction coordinate. We discuss how these observations might be useful in designing and optimising self-assembly reactions

    Extended surface disorder in the quantum Ising chain

    Full text link
    We consider random extended surface perturbations in the transverse field Ising model decaying as a power of the distance from the surface towards a pure bulk system. The decay may be linked either to the evolution of the couplings or to their probabilities. Using scaling arguments, we develop a relevance-irrelevance criterion for such perturbations. We study the probability distribution of the surface magnetization, its average and typical critical behaviour for marginal and relevant perturbations. According to analytical results, the surface magnetization follows a log-normal distribution and both the average and typical critical behaviours are characterized by power-law singularities with continuously varying exponents in the marginal case and essential singularities in the relevant case. For enhanced average local couplings, the transition becomes first order with a nonvanishing critical surface magnetization. This occurs above a positive threshold value of the perturbation amplitude in the marginal case.Comment: 15 pages, 10 figures, Plain TeX. J. Phys. A (accepted

    Critical and Tricritical Hard Objects on Bicolorable Random Lattices: Exact Solutions

    Full text link
    We address the general problem of hard objects on random lattices, and emphasize the crucial role played by the colorability of the lattices to ensure the existence of a crystallization transition. We first solve explicitly the naive (colorless) random-lattice version of the hard-square model and find that the only matter critical point is the non-unitary Lee-Yang edge singularity. We then show how to restore the crystallization transition of the hard-square model by considering the same model on bicolored random lattices. Solving this model exactly, we show moreover that the crystallization transition point lies in the universality class of the Ising model coupled to 2D quantum gravity. We finally extend our analysis to a new two-particle exclusion model, whose regular lattice version involves hard squares of two different sizes. The exact solution of this model on bicolorable random lattices displays a phase diagram with two (continuous and discontinuous) crystallization transition lines meeting at a higher order critical point, in the universality class of the tricritical Ising model coupled to 2D quantum gravity.Comment: 48 pages, 13 figures, tex, harvmac, eps

    Absence of Phase Transition for Antiferromagnetic Potts Models via the Dobrushin Uniqueness Theorem

    Full text link
    We prove that the qq-state Potts antiferromagnet on a lattice of maximum coordination number rr exhibits exponential decay of correlations uniformly at all temperatures (including zero temperature) whenever q>2rq > 2r. We also prove slightly better bounds for several two-dimensional lattices: square lattice (exponential decay for q≥7q \ge 7), triangular lattice (q≥11q \ge 11), hexagonal lattice (q≥4q \ge 4), and Kagom\'e lattice (q≥6q \ge 6). The proofs are based on the Dobrushin uniqueness theorem.Comment: 32 pages including 3 figures. Self-unpacking file containing the tex file, the needed macros (epsf.sty, indent.sty, subeqnarray.sty, and eqsection.sty) and the 3 ps file
    • …
    corecore