The partition function of the Baxter-Wu model is exactly related to the
generating function of a site-colouring problem on a hexagonal lattice. We
extend the original Bethe ansatz solution of these models in order to obtain
the eigenspectra of their transfer matrices in finite geometries and general
toroidal boundary conditions. The operator content of these models are studied
by solving numerically the Bethe-ansatz equations and by exploring conformal
invariance. Since the eigenspectra are calculated for large lattices, the
corrections to finite-size scaling are also calculated.Comment: 12 pages, latex, to appear in J. Phys. A: Gen. Mat