29 research outputs found
Fluid-structure interaction simulation of prosthetic aortic valves : comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation
In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results
Determinants for α4β2 vs. α3β4 subtype selectivity of pyrrolidine-based nachrs ligands:A computational perspective with focus on recent cryo-em receptor structures
The selectivity of α4β2 nAChR agonists over the α3β4 nicotinic receptor subtype, predominant in ganglia, primarily conditions their therapeutic range and it is still a complex and challenging issue for medicinal chemists and pharmacologists. Here, we investigate the determinants for such subtype selectivity in a series of more than forty α4β2 ligands we have previously reported, docking them into the structures of the two human subtypes, recently determined by cryo-electron microscopy. They are all pyrrolidine based analogues of the well-known α4β2 agonist N-methylprolinol pyridyl ether A-84543 and differ in the flexibility and pattern substitution of their aromatic portion. Indeed, the direct or water mediated interaction with hydrophilic residues of the relatively narrower β2 minus side through the elements decorating the aromatic ring and the stabilization of the latter by facing to the not conserved β2-Phe119 result as key distinctive features for the α4β2 affinity. Consistently, these compounds show, despite the structural similarity, very different α4β2 vs. α3β4 selectivities, from modest to very high, which relate to rigidity/extensibility degree of the portion containing the aromatic ring and to substitutions at the latter. Furthermore, the structural rationalization of the rat vs. human differences of α4β2 vs. α3β4 selectivity ratios is here proposed
Preparation and unequivocal identification of the regioisomers of nitrocatechol monobenzyl ether
<p>The four positional isomers of nitrocatechol monobenzyl ether were prepared as intermediates to nitrobenzodioxanes directly from 2-benzyloxyphenol or, through two-four steps, from catechol. These preparations addressed the issue of the certain identification of the nitration products prescinding from chemical correlation to the synthetic precursors because the positional isomers are very similar for some properties and analytical data available from the literature are largely incomplete and not conclusive. The here provided NMR, DSC, and acidity data unequivocally distinguish each nitrocatechol monobenzyl ether from its regioisomers.</p
Computational time required by the two techniques.
<p>In the 3D case, for the ALE the time of the partial simulation is reported, while for the IB-FSI the time for the complete simulation is listed.</p
Left panel: displacement of the nodulus of Arantio, comparison between an IB-FSI and a structural simulation.
<p>Right panel: kinematic of the leaflets in significant time-points of the heart cycle until diastole (IB-FSI). The colour scale indicates the magnitude of the displacement calculated from the initial configuration.</p