201 research outputs found

    Controlling molecular mobility and ductile–brittle transitions of polycarbonate copolymers

    Full text link
    To control molecular mobility and study its effects on mechanical properties, we synthesized two series of poly(ester carbonate) and polycarbonate copolymers with different linkages: (B x t) n ( x = 3, 5, 7, 9) and (B x T) n ( x = 1, 3, 5, 7, 9), where t represents the terephthalate, T represents the tetramethyl bisphenol A carbonate linkages, and B is the conventional bisphenol-A (BPA) carbonate. These two series of materials have distinct differences in their relaxation behaviors and chain mobility, as indicated by the Π-flip motion of the phenylene rings in the B x blocks. Uniaxial tensile tests of the copolymers indicate that the brittle–ductile transition (BDT) temperatures of the copolymers are correlated to whether the Γ-relaxation peaks due to the B x sequence is fully established. The materials possessing more fully established low-temperature Γ peaks give rise to a lower BDT. Also, the locations of the Γ peaks are correlated to the ring flips of the B x blocks of polymer chains. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1730–1740, 2001Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35007/1/1146_ftp.pd

    Anisotropic rate-dependent mechanical behavior of Poly(Lactic Acid) processed by Material Extrusion Additive Manufacturing

    Get PDF
    The strain-rate dependence of the yield stress for Material Extrusion Additive Manufacturing (ME-AM) polylactide samples was investigated. Apparent densities of the ME-AM processed tensile test specimens were measured and taken into account in order to study the effects of the ME-AM processing step on the material behavior. Three different printing parameters were changed to investigate their influence on mechanical properties, i.e. infill velocity, infill orientation angle, and bed temperature. Additionally, compression molded test samples were manufactured in order to determine bulk properties, which have been compared to the ME-AM sample sets. Anisotropy was detected in the strain-rate dependence of the yield stresses. ME-AM samples with an infill angle of 0° have a higher strain-rate dependence than specimens with αor = 90°. Remarkably, the strain-rate dependence manifested by the ME-AM samples is considerably lower than that displayed by compression molded test specimens. The Ree-Eyring modification of the Eyring flow rule is able to accurately describe the strain-rate dependence of the yield stresses, taking two molecular deformation processes into account to describe the yield kinetics. The results from this paper further show a change from a brittle behavior in case of compression molded samples to a semi-ductile behavior for some of the ME-AM sample sets. This change is attributed to the processing phase and stresses the importance that the temperature profile (initial fast cooling combined with successive heating cycles) and the strain profile during ME-AM processing have on the resulting mechanical properties. Both these profiles are significantly different from the thermo-mechanical history that material elements experience during conventional processing methods, e.g. injection or compression molding. This paper can be seen as initial work that can help to further develop predictive numerical tools for Material Extrusion Additive Manufacturing, as well as for the design of structural components

    Yield stress distribution in injection-mouldedglassy polymers

    Get PDF
    A methodology for structural analysis simulations is presented that incorporates the distribution of mechanical propertiesalong the geometrical dimensions of injection-moulded amorphous polymer products. It is based on a previously developedmodelling approach, where the thermomechanical history experienced during processing was used to determine the yield stressat the end of an injection-moulding cycle. Comparison between experimental data and simulation results showed an excellentquantitative agreement, both for short-term tensile tests as well as long-term creep experiments over a range of strain rates,applied stresses, and testing temperatures. Changes in mould temperature and component wall thickness, which directly aïŹ€ectthe cooling proïŹles and, hence, the mechanical properties, were well captured by the methodology presented. Furthermore, itturns out that the distribution of the yield stress along a tensile bar is one of the triggers for the onset of the (strong) localizationgenerally observed in experiments.Spanish Government (Ministry of Sci-ence and Innovation, Ministry of Economy and Competitiveness)through grant numbers RYC-2010-07171 and DPI2011-25470This is the peer reviewed version of the following article: Verbeeten, W. M., Kanters, M. J., Engels, T. A. and Govaert, L. E. (2015), Yield stress distribution in injection-moulded glassy polymers. Polym. Int., 64(11): 1527–1536, which has been published in final form at http://dx.doi.org/10.1002/pi.4898. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archivin

    Determination of the mechanical properties of amorphous materials through instrumented nanoindentation

    Get PDF
    A novel methodology based on instrumented indentation is developed to determine the mechanical properties of amorphous materials which present cohesive-frictional behaviour. The approach is based on the concept of a universal hardness equation, which results from the assumption of a characteristic indentation pressure proportional to the hardness. The actual universal hardness equation is obtained from a detailed finite element analysis of the process of sharp indentation for a very wide range of material properties, and the inverse problem (i.e. how to extract the elastic modulus, the compressive yield strength and the friction angle) from instrumented indentation is solved. The applicability and limitations of the novel approach are highlighted. Finally, the model is validated against experimental data in metallic and ceramic glasses as well as polymers, covering a wide range of amorphous materials in terms of elastic modulus, yield strength and friction angle

    The macroscopic yield behaviour of polymers

    Full text link
    A yield criterion, not previously compared with the actual macroscopic behaviour of polymers, is herein compared with the pressure-modified octahedral shear stress criterion earlier suggested by others. This new relation, which is a version of the von Mises criterion, accommodates differences in tensile and compressive yield strengths and accounts for any dependence of yielding on the hydrostatic component of the applied stress state.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44784/1/10853_2004_Article_BF00550671.pd

    Application of activated barrier hopping theory to viscoplastic modeling of glassy polymers

    Get PDF
    YesAn established statistical mechanical theory of amorphous polymer deformation has been incorporated as a plastic mechanism into a constitutive model and applied to a range of polymer mechanical deformations. The temperature and rate dependence of the tensile yield of PVC, as reported in early studies, has been modeled to high levels of accuracy. Tensile experiments on PET reported here are analyzed similarly and good accuracy is also achieved. The frequently observed increase in the gradient of the plot of yield stress against logarithm of strain rate is an inherent feature of the constitutive model. The form of temperature dependence of the yield that is predicted by the model is found to give an accurate representation. The constitutive model is developed in two-dimensional form and implemented as a user-defined subroutine in the finite element package ABAQUS. This analysis is applied to the tensile experiments on PET, in some of which strain is localized in the form of shear bands and necks. These deformations are modeled with partial success, though adiabatic heating of the instability causes inaccuracies for this isothermal implementation of the model. The plastic mechanism has advantages over the Eyring process, is equally tractable,and presents no particular difficulties in implementation with finite elements.F. Boutenel acknowledges an Erasmus Programme Scholarshi
    • 

    corecore