162 research outputs found

    Effects of Lactobacillus rhamnosus GG supplementation on cow's milk allergy in a mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cow's milk allergy (CMA) is one of the most prevalent human food-borne allergies, particularly in infants and young children from developed countries. Our study aims to evaluate the effects of <it>Lactobacillus rhamnosus </it>GG (LGG) administration on CMA development using whole cow's milk proteins (CMP) sensitized Balb/C mice by two different sensitization methods.</p> <p>Methods</p> <p>LGG supplemented mice were either sensitized orally with CMP and cholera toxin B-subunit (CTB) as adjuvant, or intraperitoneally (IP) with CMP but without the adjuvant. Mice were then orally challenged with CMP and allergic responses were accessed by monitoring hypersensitivity scores, measuring the levels of CMP-specific immunoglobulins (IgG1, IgG2a and IgG) and total IgE from sera, and cytokines (IL-4 and IFN-γ) from spleen lysates.</p> <p>Results</p> <p>Sensitization to CMP was successful only in IP sensitized mice, but not in orally sensitized mice with CMP and CTB. Interestingly, LGG supplementation appeared to have reduced cow's milk allergy (CMA) in the IP group of mice, as indicated by lowered allergic responses.</p> <p>Conclusions</p> <p>Adjuvant-free IP sensitization with CMP was successful in inducing CMA in the Balb/C mice model. LGG supplementation favourably modulated immune reactions by shifting Th2-dominated trends toward Th1-dominated responses in CMP sensitized mice. Our results also suggest that oral sensitization by the co-administration of CMP and CTB, as adjuvant, might not be appropriate to induce CMA in mice.</p

    Cell Walls of Saccharomyces cerevisiae Differentially Modulated Innate Immunity and Glucose Metabolism during Late Systemic Inflammation

    Get PDF
    BACKGROUND: Salmonella causes acute systemic inflammation by using its virulence factors to invade the intestinal epithelium. But, prolonged inflammation may provoke severe body catabolism and immunological diseases. Salmonella has become more life-threatening due to emergence of multiple-antibiotic resistant strains. Mannose-rich oligosaccharides (MOS) from cells walls of Saccharomyces cerevisiae have shown to bind mannose-specific lectin of Gram-negative bacteria including Salmonella, and prevent their adherence to intestinal epithelial cells. However, whether MOS may potentially mitigate systemic inflammation is not investigated yet. Moreover, molecular events underlying innate immune responses and metabolic activities during late inflammation, in presence or absence of MOS, are unknown. METHODS AND PRINCIPAL FINDINGS: Using a Salmonella LPS-induced systemic inflammation chicken model and microarray analysis, we investigated the effects of MOS and virginiamycin (VIRG, a sub-therapeutic antibiotic) on innate immunity and glucose metabolism during late inflammation. Here, we demonstrate that MOS and VIRG modulated innate immunity and metabolic genes differently. Innate immune responses were principally mediated by intestinal IL-3, but not TNF-α, IL-1 or IL-6, whereas glucose mobilization occurred through intestinal gluconeogenesis only. MOS inherently induced IL-3 expression in control hosts. Consequent to LPS challenge, IL-3 induction in VIRG hosts but not differentially expressed in MOS hosts revealed that MOS counteracted LPS's detrimental inflammatory effects. Metabolic pathways are built to elucidate the mechanisms by which VIRG host's higher energy requirements were met: including gene up-regulations for intestinal gluconeogenesis (PEPCK) and liver glycolysis (ENO2), and intriguingly liver fatty acid synthesis through ATP citrate synthase (CS) down-regulation and ATP citrate lyase (ACLY) and malic enzyme (ME) up-regulations. However, MOS host's lower energy demands were sufficiently met through TCA citrate-derived energy, as indicated by CS up-regulation. CONCLUSIONS: MOS terminated inflammation earlier than VIRG and reduced glucose mobilization, thus representing a novel biological strategy to alleviate Salmonella-induced systemic inflammation in human and animal hosts

    Effects of nonantibiotic feed additives on performance, nutrient retention, gut pH, and intestinal morphology of broilers fed different levels of energy.

    Get PDF
    An experiment was conducted to determine the effects of different feed additives on performance, nutrient retention, gut pH, and intestinal morphology of broilers fed different levels of energy. This study was a 4 × 2 factorial arrangement of 4 feed additive programs (a basal diet without any feed additive as the control, the basal diet with added organic acid, the basal diet with added prebiotic, and the basal diet with added probiotic) with recommended levels (3,150 and 3,200 kcal of ME/kg of diet for the starter and finisher diets, respectively) or low levels (90% of recommended) of energy. A total of 640 one-day-old male and female broiler chicks were randomly assigned to 8 treatments. Each treatment consisted of 4 replicate floor pens of 20 birds each. Starter and finisher diets were fed from 1 to 21 d and 21 to 42 d of age, respectively. Dietary levels of other nutrients, housing, and general management practices were similar for all treatments. Dietary inclusion of additives had no significant effects on broiler performance, intestinal villus height, crypt depth, gut pH, and dietary AME. Birds fed the low-energy diets were heavier but had inferior FCR compared with those fed the recommended-energy diets. Prebiotic and organic acid significantly (P < 0.05) improved protein digestibility. The recommended-energy diets significantly (P < 0.05) increased AME and protein digestibility. No interactions were observed for the measured parameters

    Modulations of the Chicken Cecal Microbiome and Metagenome in Response to Anticoccidial and Growth Promoter Treatment

    Get PDF
    With increasing pressures to reduce or eliminate the use of antimicrobials for growth promotion purposes in production animals, there is a growing need to better understand the effects elicited by these agents in order to identify alternative approaches that might be used to maintain animal health. Antibiotic usage at subtherapeutic levels is postulated to confer a number of modulations in the microbes within the gut that ultimately result in growth promotion and reduced occurrence of disease. This study examined the effects of the coccidiostat monensin and the growth promoters virginiamycin and tylosin on the broiler chicken cecal microbiome and metagenome. Using a longitudinal design, cecal contents of commercial chickens were extracted and examined using 16S rRNA and total DNA shotgun metagenomic pyrosequencing. A number of genus-level enrichments and depletions were observed in response to monensin alone, or monensin in combination with virginiamycin or tylosin. Of note, monensin effects included depletions of Roseburia, Lactobacillus and Enterococcus, and enrichments in Coprococcus and Anaerofilum. The most notable effect observed in the monensin/virginiamycin and monensin/tylosin treatments, but not in the monensin-alone treatments, was enrichments in Escherichia coli. Analysis of the metagenomic dataset identified enrichments in transport system genes, type I fimbrial genes, and type IV conjugative secretion system genes. No significant differences were observed with regard to antimicrobial resistance gene counts. Overall, this study provides a more comprehensive glimpse of the chicken cecum microbial community, the modulations of this community in response to growth promoters, and targets for future efforts to mimic these effects using alternative approaches

    Applications of lignin in the agri-food industry

    Get PDF
    Of late, valorization of agri-food industrial by-products and their sustainable utilization is gaining much contemplation world-over. Globally, 'Zero Waste Concept' is promoted with main emphasis laid towards generation of minimal wastes and maximal utilization of plantbased agri-food raw materials. One of the wastes/by-products in the agri-food industry are the lignin, which occurs as lignocellulosic biomass. This biomass is deliberated to be an environmental pollutant as they offer resistance to natural biodegradation. Safe disposal of this biomass is often considered a major challenge, especially in low-income countries. Hence, the application of modern technologies to effectively reduce these types of wastes and maximize their potential use/applications is vital in the present day scenario. Nevertheless, in some of the high-income countries, attempts have been made to efficiently utilize lignin as a source of fuel, as a raw material in the paper industry, as a filler material in biopolymer based packaging and for producing bioethanol. However, as of today, agri-food industrial applications remains significantly underexplored. Chemically, lignin is heterogeneous, bio-polymeric, polyphenolic compound, which is present naturally in plants, providing mechanical strength and rigidity. Reports are available wherein purified lignin is established to possess therapeutic values; and are rich in antioxidant, anti-microbial, anti-carcinogenic, antidiabetic properties, etc. This chapter is divided into four sub-categories focusing on various technological aspects related to isolation and characterization of lignin; established uses of lignin; proved bioactivities and therapeutic potentials of lignin, and finally on identifying the existing research gaps followed by future recommendations for potential use from agri-food industrial wastes.Theme of this chapter is based on our ongoing project- Valortech, which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 810630
    corecore