69 research outputs found

    Comparison between backscattered TerraSAR signals and simulations from the radar backscattering models IEM, Oh, and Dubois

    Get PDF
    The objective of this paper is to evaluate on bare soils the surface backscattering models IEM, Oh, and Dubois in X-band. This analysis uses a large database of TerraSAR-X images and in situ measurements (soil moisture and surface roughness). Oh's model correctly simulates the radar signal for HH and VV polarizations whereas the simulations performed with the Dubois model show a poor correlation between TerraSAR data and model. The backscattering Integral Equation Model (IEM) model simulates correctly the backscattering coefficient only for rms1.5 cm in using Gaussian function. However, the results are not satisfactory for a use of IEM in the inversion of TerraSAR data. A semi-empirical calibration of IEM was done in X-band. Good agreement was found between the TerraSAR data and the simulations using the calibrated version of the IEM

    Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust

    Get PDF
    Le comportement du signal radar TerraSAR-X en fonction des paramètres du sol (rugosité, humidité, structure) a été analysé sur des données 2009 et 2010. Les résultats montrent que la sensibilité du signal radar à l'humidité est plus importante pour des faibles incidences (25° en comparaison à 50°). Pour des fortes valeurs d'humidité, le signal TerraSAR-X est plus sensible à la rugosité du sol à forte incidence (50°). La forte résolution spatiale des données TerraSAR-X (1 m) permet de détecter la croûte de battance à l'échelle intra parcellaire. / Soils play a key role in shaping the environment and in risk assessment. We characterized the soils of bare agricultural plots using TerraSAR-X (9.5 GHz) data acquired in 2009 and 2010. We analyzed the behavior of the TerraSAR-X signal for two configurations, HH-25° and HH-50°, with regard to several soil conditions: moisture content, surface roughness, soil composition and soil-surface structure (slaking crust).The TerraSAR-X signal was more sensitive to soil moisture at a low (25°) incidence angle than at a high incidence angle (50°). For high soil moisture (N25%), the TerraSAR-X signal was more sensitive to soil roughness at a high incidence angle (50°) than at a low incidence angle (25°). The high spatial resolution of the TerraSAR-X data (1 m) enabled the soil composition and slaking crust to be analyzed at the within-plot scale based on the radar signal. The two loamy-soil categories that composed our training plots did not differ sufficiently in their percentages of sand and clay to be discriminated by the X-band radar signal.However, the spatial distribution of slaking crust could be detected when soil moisture variation is observed between soil crusted and soil without crust. Indeed, areas covered by slaking crust could have greater soil moisture and consequently a greater backscattering signal than soils without crust

    Kalideos OSR MiPy : un observatoire pour la recherche et la démonstration des applications de la télédétection à la gestion des territoires

    Get PDF
    International audienceCes dernières années, le CESBIO a mis en place un Observatoire Spatial Régional 'OSR' : un dispositif d'observation couplant mesures de terrain et télédétection dans le sud-ouest de la France. L'OSR se base sur des acquisitions mensuelles de données satellitaires à résolution décamétrique depuis 2002 et sur des sites expérimentaux lourdement instrumentés (mesures en continu de flux d'eau et de carbone) à partir de 2004. Ce dispositif a été reconnu service d'observation par l'INSU/CNRS en 2007 et site KALIDEOS par le CNES fin 2009 : 'KALIDEOS OSR MiPy'. Le site atelier correspond à une emprise d'image SPOT, soit environ 50x50 km et couvre une grande diversité de milieux (pédologie, topographie), d'occupation et d'utilisation des sols, de pratiques et de modalités de gestion (agricole, forestière...) et de conditions climatiques (fort gradient de déficits hydriques estivaux). Pour la télédétection, ce site a servi la préparation de SMOS, et il soutient maintenant en priorité à la préparation des missions VENμS et Sentinel-2. Les aspects radar, imagerie thermique et les approches multi-capteurs se développent depuis peu. Le traitement du signal, la physique de la mesure et l'amélioration de la qualité des données constituent le premier axe de recherche. Au niveau thématique, le CESBIO a pour priorité les suivis et les modélisations des agrosystèmes de grandes cultures. L'implication récente d'autres partenaires scientifiques ou gestionnaires a permis d'initier des travaux sur d'autres aspects, comme la biodiversité, l'aménagement du territoire, le suivi de l'extension urbaine, les risques environnementaux, la santé des forêts, l'enfrichement, la diversité et la productivité des prairies. La valorisation des 10 années d'archives 2002-2011 débute et semble très pertinente pour la caractérisation en haute et en basse résolution des conséquences d'années climatiques atypiques (2003, 2011) sur les éco-agro-systèmes. L'extrapolation des résultats obtenus sur ce site atelier à toute la région Midi-Pyrénées ou à la chaine des Pyrénées est aussi initiée

    Evaluation of Multiorbital SAR and Multisensor Optical Data for Empirical Estimation of Rapeseed Biophysical Parameters

    Get PDF
    This article aims to evaluate the potential of multitemporal and multiorbital remote sensing data acquired both in the microwave and optical domain to derive rapeseed biophysical parameters (crop height, dry mass, fresh mass, and plant water content). Dense temporal series of 98 Landsat-8 and Sentinel-2 images were used to derive normalized difference vegetation index (NDVI), green fraction cover (fCover), and green area index (GAI), while backscattering coefficients and radar vegetation index (RVI) were obtained from 231 mages acquired by synthetic aperture radar (SAR) onboard Sentinel-1 platform. Temporal signatures of these remote sensing indicators (RSI) were physically interpreted, compared with each other to ground measurements of biophysical parameters acquired over 14 winter rapeseed fields throughout the 2017–2018 crop season. We introduced new indicators based on the cumulative sum of each RSI that showed a significant improvement in their predictive power. Results particularly reveal the complementarity of SAR and optical data for rapeseed crop monitoring throughout its phenological cycle. They highlight the potential of the newly introduced indicator based on the VH polarized backscatter coefficient to estimate height (R2 = 0.87), plant water content (R2 = 0.77, from flowering to harvest), and fresh mass (R2 = 0.73) and RVI to estimate dry mass (R2 = 0.82). Results also demonstrate that multiorbital SAR data can be merged without significantly degrading the performance of SAR-based relationships while strongly increasing the temporal sampling of the monitoring. These results are promising in view of assimilating optical and SAR data into crop models for finer rapeseed monitoring

    Transitions sol-gel de colloïdes anisotropes sous champs de cisaillement, pression et ondes ultrasonores, caractérisées par diffusion de rayons x aux petits angles in-situ

    Get PDF
    L'objectif de ce travail est de caractériser aux échelles mésoscopiques, l'effet combiné des champs de pression, hydrodynamiques et ultrasonores sur les mécanismes de transition sol-gel de colloïdes anisotropes d'argiles lors de l'ultrafiltration tangentielle. Pour cela, des cellules de filtration ont été développées en intégrant une lame vibrante sollicitée à 20kHz par un générateur ultrasonore. Ces cellules de filtration permettent l'observation in-situ aux échelles nanométriques par diffusion de rayons X aux petits angles (SAXS). Différentes suspensions aqueuses d'argiles ont été étudiées : des argiles naturelles de montmorillonite Wyoming-Na et des argiles synthétiques de Laponite en présence ou non d'un peptisant le tetrasodium diphosphate (Na4P2O7). Par ailleurs l'effet des ultrasons sur le comportement rhéologique de suspensions a aussi été étudié.  L'effet du pré-cisaillement induit par la pompe du circuit de filtration et l'effet des ultrasons, sur les contraintes de cisaillement des suspensions de Laponite ont été mises en évidence. Les deux sollicitations réduisent les niveaux de contrainte et l'effet est plus marqué sur les suspensions avec peptisant (à interaction répulsive dominante) que sur les suspensions sans peptisant (à interaction attractive dominante). Les évolutions temporelles de la structure et de la concentration en colloïdes en fonction de la distance à la membrane ont ainsi été caractérisées sous différentes conditions de filtration et de sollicitations ultrasonores. Deux mécanismes principaux ont été mis en évidence lors de l'application des ultrasons : soit un mécanisme de fracturation ou d'intensification locale de l'écoulement lorsque les colloïdes forment un réseau dense très anisotrope (cas des suspensions de Montmorillonite et de Laponite sans peptisant), soit un mécanisme d'érosion des couches concentrées pour les colloïdes assemblés en structures ouvertes (cas des suspensions de Laponite avec peptisant)

    Estimation of Multi-Frequency, Multi-Incidence and Multi-Polarization Backscattering Coefficients over Bare Agricultural Soil Using Statistical Algorithms

    No full text
    International audienceIn the last decade, many SAR missions have been launched to reinforce the all-weather observation capacity of the Earth. The precise modeling of radar signals becomes crucial in order to translate them into essential biophysical parameters for the management of natural resources (water, biomass and energy). The objective of this study was to demonstrate the capabilities of two statistical algorithms (i.e., multiple linear regression (MLR) and random forest (RF)) to accurately simulate the backscattering coefficients observed over bare agricultural soil surfaces. This study was based on satellite and ground data collected on bare soil surfaces over an agricultural region located in southwestern France near Toulouse. Multi-configuration backscattering coefficients were acquired by TerraSAR-X and Radarsat-2 in the X- and C-bands, in co-(abbreviated σ0HH and σ0VV) and cross-polarization states (abbreviated σ0HV and σ0VH) and at incidence angles ranging from 24° to 53°. Models were independently calibrated and validated using a ground dataset covering a wide range of soil conditions, including the topsoil moisture (range: 2.4–35.3%), root-mean-square height (range: 0.5–7.9cm) and clay fraction (range: 9–58%). Higher-magnitude correlations (r) and lower errors (RMSE) were obtained when using RF (r values ranging from 0.69 to 0.86 and RMSE from 1.95 to 1.00 dB, depending on the considered signal configuration) compared to MLR (r values ranging from 0.58 to 0.77 and RMSE from 2.22 to 1.24 dB). Both surpass the performance presented in previous studies based on either empirical, semi-empirical or physical models. In the linear approach, the information is mainly provided by the surface moisture and the angle of incidence (especially in the case of co-polarized signals, regardless of the frequency), while the influence of roughness or texture becomes significant for cross-polarized signals in the C-band. On the contrary, all the surface descriptors contribute in the approach based on RF. In future work, the use of the RF algorithm developed in this paper should improve the estimation of soil parameters

    Use of Statistical Approach Combined with SAR Polarimetric Indices for Surface Moisture Estimation over Bare Agricultural Soil

    No full text
    This paper aims at addressing the potential of polarimetric indices derived from C-band Radarsat-2 images to estimate the surface soil moisture (SSM) over bare agricultural soils. Images have been acquired during the Multispectral Crop Monitoring (MCM) experiment throughout an agricultural season over a study site located in southwestern France. Synchronously with the acquisitions of the 22 SAR images, field measurements of soil descriptors were collected on surface states with contrasting conditions, with SSM levels ranging from 2.4% to 35.3% m3·m−3, surface roughness characterized by standard deviation of roughness heights ranging from 0.5 to 7.9 cm, and soil texture showing fractions of clay, silt and sand between 9%–58%, 22%–77%, and 4%–53%, respectively. The dataset was used to independently train and validate a statistical algorithm (random forest), SSM being estimated using the polarimetric indices and backscatter coefficients derived from the SAR images. Among the SAR signals tested, the performance levels are very uneven, as evidenced by magnitude of correlation (R2) ranging from 0.35 to 0.67. The following polarimetric indices present the best estimates of SSM: the first, second and third elements of the diagonal (T11, T22, and T33), eigenvalues (λ1, λ2, λ3 from Cloude–Pottier decomposition), Shannon entropy, Freeman double-bounce and volume scattering mechanisms, the total scattered power (SPAN), and the backscattering coefficients whatever the polarization state, with correlations greater than 0.6 and with RMSE ranged between 4.8% and 5.3% m3·m−3. These performances remain limited although they are among the best SSM estimates using C-band images, comparable to those obtained with other approaches (i.e., empirical, physical based, or model inversion)

    Assimilation of LAI and Dry Biomass Data From Optical and SAR Images Into an Agro-Meteorological Model to Estimate Soybean Yield

    No full text
    International audienceCrop monitoring at a fine scale and crop yield estimation are critical from an environmental perspective because they provide essential information to combine increased food production and sustainable management of agricultural landscapes. The aim of this article is to estimate soybean yield using an agro-meteorological model controlled by optical and/or synthetic aperture radar (SAR) multipolarized satellite images. Satellite and ground data were collected over seven working farms. Optical and SAR images were acquired by Formosat-2, Spot-4, Spot-5, and Radarsat-2 satellites during the soybean vegetation cycle. A vegetation index (NDVI) was derived from the optical images, and backscattering coefficients and polarimetric indicators were computed from full quad-pol Radarsat-2 images. An angular normalization of SAR data was performed to minimize the incidence angle effects on SAR signals by using the complementarities provided by SAR and optical data. The best results are obtained when the model is controlled by both the leaf area index (LAI) derived from the optical vegetation index modified triangular vegetation index (MTVI2) or from the SAR backscattering coefficient {\sigma _{{^{\circ}}{textsc{vv}}}} ({text{LAI}}_{text{MTVI2}} or ( {text{LAI}}_{\sigma ^{\circ}{textsc{vv}}} ) and the dry biomass (DB) derived from the SAR Pauli matrix T33 ({text{DB}}_{{text{T}}33}) ({text{r}}^{2} gt 0.83) , demonstrating the complementary of optical and SAR data

    Determination of the crop row orientations from Formosat-2 multi-temporal and panchromatic images

    Get PDF
    This paper presents a technique developed for the retrieval of the orientation of crop rows, over anthropic lands dedicated to agriculture in order to further improve estimate of crop production and soil erosion management. Five crop types are considered: wheat, barley, rapeseed, sunflower, corn and hemp. The study is part of the multi-sensor crop-monitoring experiment, conducted in 2010 throughout the agricultural season (MCM'10) over an area located in southwestern France, near Toulouse. The proposed methodology is based on the use of satellite images acquired by Formosat-2, at high spatial resolution in panchromatic and multispectral modes (with spatial resolution of 2 and 8 m, respectively). Orientations are derived and evaluated for each image and for each plot, using directional spatial filters (45 and 135 ) and mathematical morphology algorithms. ''Single-date'' and ''multi-temporal'' approaches are considered. The single-date analyses confirm the good performances of the proposed method, but emphasize the limitation of the approach for estimating the crop row orientation over the whole landscape with only one date. The multi-date analyses allow (1) determining the most suitable agricultural period for the detection of the row orientations, and (2) extending the estimation to the entire footprint of the study area. For the winter crops (wheat, barley and rapeseed), best results are obtained with images acquired just after harvest, when surfaces are covered by stubbles or during the period of deep tillage (0.27 > R2 > 0.99 and 7.15 > RMSE > 43.02 ). For the summer crops (sunflower, corn and hemp), results are strongly crop and date dependents (0 > R2 > 0.96, 10.22 > RMSE > 80 ), with a well-marked impact of flowering, irrigation equipment and/or maximum crop development. Last, the extent of the method to the whole studied zone allows mapping 90% of the crop row orientations (more than 45,000 ha) with an error inferior to 40 , associated to a confidence index ranging from 1 to 5 for each agricultural plot
    • …
    corecore