589 research outputs found

    Developing A Telehealth Integrated Chronic Care Management Model for Type II Diabetes

    Get PDF
    Constructing an effective chronic care management (CCM) model can be challenging. Developing a care model that is operational and intended for future adoption into a healthcare organization\u27s daily patient care services can be even more challenging. Cincinnati Health Department (CHD) administration continues to seek innovations in care management models designed to provide nursing care to those with diabetes and socially distanced by the CoVID-19 Pandemic. While this model must be sensitive to CHD\u27s internal and external pressures, it must also consider logistic obstacles for providing patient care that is cost-effective, efficient, and above all, safe. An extensive literature search has revealed that one such model does not exist. To address this issue, a CCM model that integrates telehealth technology was developed from an existing CCM model and the current telehealth platform at the CHD for the delivery of nursing diabetic care to remote type 2 diabetic patients. The model presented herein, the Tele-CCM Model, offers the CHD an innovative and effective method for providing care to those high-risk patients socially distanced by the pandemic

    An Optogenetic Brain-machine Interface for Spatiotemporal Neuromodulation

    Get PDF
    Direct neural stimulation has recently become a standard therapy for neurological disorders such as Parkinson\u27s Disease, Essential Tremors, and Dystonia. Currently, deep brain electro-stimulation and neuro-pharmaceutical treatments are the dominant therapeutic options available to the public. As our understanding of brain function and neurological diseases improves, we are able to develop more advanced neuromodulation techniques. These methods could become viable treatment solutions for treating brain dysfunction. Optogenetics, first introduced by a research team led by Karl Deisseroth at Stanford University, has proved to be a versatile technique with remarkable potential to be used in treatments for brain disorders, dysfunction, and injuries. Optogenetics makes use of light-gated ion channels and pumps, originally derived from certain types of algae or bacteria, to bi-directionally modulate the activity of neurons in mammals. By adopting new advances in the field of optics and photonics, including high-speed high-resolution spatial light modulators, solid-state lasers, and ultra-low noise photodetectors, we can build sophisticated devices which allow precise and resolute optical patterning in both the spatial and temporal domains. In this thesis, I present an optogenetic brain-machine interface that offers high spatiotemporal neuromodulation functionality. The incorporation of imaging and sensing devices of neural activity into the system allowed us to run multiple independent experiments. These optogenetic experiments include closed-loop modulation of multiple areas of tissue, investigating the causal relationship between neural activity and blood flow, and quantifying the relationship between neural activity and cell metabolism. To understand light to brain tissue interaction in a rat brain, a device has been developed which allows one to extract the optical properties throughout the tissue. Utilizing this data, Monte Carlo software was used to predict light distribution within the brain. This has far reaching effects for the future use of optogenetics. Our approach will allow the investigator the ability to precisely understand how introduced light will be distributed within the rat brain where light-gated ion channels have been genetically expressed. This becomes noticeably important when attempting to determine which areas of the brain tissue will and won\u27t be modulated by the introduced light. Due to the many advantages optogenetics inherently provides, it is a rising prospect for novel neuromodulation therapies. With continued research and development of devices, we could create new therapies for disabilities that arise from dysfunction of the human brain

    Modeling Quantum Optical Components, Pulses and Fiber Channels Using OMNeT++

    Full text link
    Quantum Key Distribution (QKD) is an innovative technology which exploits the laws of quantum mechanics to generate and distribute unconditionally secure cryptographic keys. While QKD offers the promise of unconditionally secure key distribution, real world systems are built from non-ideal components which necessitates the need to model and understand the impact these non-idealities have on system performance and security. OMNeT++ has been used as a basis to develop a simulation framework to support this endeavor. This framework, referred to as "qkdX" extends OMNeT++'s module and message abstractions to efficiently model optical components, optical pulses, operating protocols and processes. This paper presents the design of this framework including how OMNeT++'s abstractions have been utilized to model quantum optical components, optical pulses, fiber and free space channels. Furthermore, from our toolbox of created components, we present various notional and real QKD systems, which have been studied and analyzed.Comment: Published in: A. F\"orster, C. Minkenberg, G. R. Herrera, M. Kirsche (Eds.), Proc. of the 2nd OMNeT++ Community Summit, IBM Research - Zurich, Switzerland, September 3-4, 201

    I. Macromolecular and architectural effects on the polymerization of α-helices & II. Functional ROMP curing polyester thermosets

    Get PDF
    Polypeptides provide form and function to every form of life we know on earth. They have the ability to accelerate reactions that would otherwise not occur on a timescale reasonable for life, they can assemble to form extremely complex and hierarchical structures that translate nanoscale movement into macroscopic movement as exemplified in muscle tissue, and they have a unique ability to construct themselves via ribosomes. The first part of my research has concentrated on asking the question, “How can synthetic materials behave like those found in nature?”. While it is a broad question, my research has demonstrated that polymer systems can utilize cues given by their architecture to alter their behavior. In more specific terms, I have shown that polymer kinetics can be governed by not only secondary structure, but also tertiary structure. Utilizing N-carboxyanhydride monomers that polymerize to form polypeptides, the folding of the polymers into alpha-helices was shown to drastically increase the rate of propagation. Furthermore, when the alpha-helices were organized in a close, parallel array along a separate polymer scaffold, the polymerization was found to increase in rate even more substantially. The second part of my thesis focuses on a separate project altogether, sponsored by The Dow Chemical Company. This project focuses on the utilization of ring-opening metathesis polymerization (ROMP) to fabricate new useful materials. ROMP has been a widely utilized and powerful polymerization method to create extremely smart and tunable materials. While a few monomers capable of being polymerized with ROMP have found commercial success, there is substantial room for development. In the second part of my thesis I demonstrated that functional monomers capable of undergoing ROMP can be incorporated into polyesters via the alternating polymerization of epoxides and anhydrides. The utilization of these polymers as multi-functional crosslinkers for thermosets was also demonstrated, incorporating the small molecules 4-dimethylaminopyridine as an agent to limit the curing at room temperature

    The Infocus Hard X-ray Telescope: Pixellated CZT Detector/Shield Performance and Flight Results

    Get PDF
    The CZT detector on the Infocus hard X-ray telescope is a pixellated solid-state device capable of imaging spectroscopy by measuring the position and energy of each incoming photon. The detector sits at the focal point of an 8m focal length multilayered grazing incidence X-ray mirror which has significant effective area between 20--40 keV. The detector has an energy resolution of 4.0keV at 32keV, and the Infocus telescope has an angular resolution of 2.2 arcminute and a field of view of about 10 arcminutes. Infocus flew on a balloon mission in July 2001 and observed Cygnus X-1. We present results from laboratory testing of the detector to measure the uniformity of response across the detector, to determine the spectral resolution, and to perform a simple noise decomposition. We also present a hard X-ray spectrum and image of Cygnus X-1, and measurements of the hard X-ray CZT background obtained with the SWIN detector on Infocus.Comment: To appear in the proceedings of the SPIE conference "Astronomical Telescopes and Instrumentation", #4851-116, Kona, Hawaii, Aug. 22-28, 2002. 12 pages, 9 figure

    Charged Nanoparticles Quench the Propulsion of Active Janus Colloids

    Get PDF
    Active colloidal particles regularly interact with surfaces in applications ranging from microfluidics to sensing. Recent work has revealed the complex nature of these surface interactions for active particles. Herein, we summarize experiments and simulations that show the impact of charged nanoparticles on the propulsion of an active colloid near a boundary. Adding charged nanoparticles not only decreased the average separation distance of a passive colloid because of depletion attraction as expected but also decreased the apparent propulsion of a Janus colloid to near zero. Complementary agentbased simulations considering the impact of hydrodynamics for active Janus colloids were conducted in the range of separation distances inferred from experiment. These simulations showed that propulsion speed decreased monotonically with decreasing average separation distance. Although the trend found in experiments and simulations was in qualitative agreement, there was still a significant difference in the magnitude of speed reduction. The quantitative difference was attributed to the influence of charged nanoparticles on the conductivity of the active particle suspension. Follow-up experiments delineating the impact of depletion and conductivity showed that both contribute to the reduction of speed for an active Janus particle. The experimental and simulated data suggests that it is necessary to consider the synergistic effects between various mechanisms influencing interactions experienced by an active particle near a boundary

    Charged Nanoparticles Quench the Propulsion of Active Janus Colloids

    Get PDF
    Active colloidal particles regularly interact with surfaces in applications ranging from microfluidics to sensing. Recent work has revealed the complex nature of these surface interactions for active particles. Herein, we summarize experiments and simulations that show the impact of charged nanoparticles on the propulsion of an active colloid near a boundary. Adding charged nanoparticles not only decreased the average separation distance of a passive colloid because of depletion attraction as expected but also decreased the apparent propulsion of a Janus colloid to near zero. Complementary agentbased simulations considering the impact of hydrodynamics for active Janus colloids were conducted in the range of separation distances inferred from experiment. These simulations showed that propulsion speed decreased monotonically with decreasing average separation distance. Although the trend found in experiments and simulations was in qualitative agreement, there was still a significant difference in the magnitude of speed reduction. The quantitative difference was attributed to the influence of charged nanoparticles on the conductivity of the active particle suspension. Follow-up experiments delineating the impact of depletion and conductivity showed that both contribute to the reduction of speed for an active Janus particle. The experimental and simulated data suggests that it is necessary to consider the synergistic effects between various mechanisms influencing interactions experienced by an active particle near a boundary

    Modeling, Simulation, and Performance Analysis of Decoy State Enabled Quantum Key Distribution Systems

    Get PDF
    Quantum Key Distribution (QKD) systems exploit the laws of quantum mechanics to generate secure keying material for cryptographic purposes. To date, several commercially viable decoy state enabled QKD systems have been successfully demonstrated and show promise for high-security applications such as banking, government, and military environments. In this work, a detailed performance analysis of decoy state enabled QKD systems is conducted through model and simulation of several common decoy state configurations. The results of this study uniquely demonstrate that the decoy state protocol can ensure Photon Number Splitting (PNS) attacks are detected with high confidence, while maximizing the system’s quantum throughput at no additional cost. Additionally, implementation security guidance is provided for QKD system developers and users

    Optimizing Decoy State Enabled Quantum Key Distribution Systems to Maximize Quantum Throughput and Detect Photon Number Splitting Attacks with High Confidence

    Full text link
    Quantum Key Distribution (QKD) is an innovative quantum communications protocol which exploits the laws of quantum mechanics to generate unconditionally secure cryptographic keying material between two geographically separated parties. The unique nature of QKD shows promise for high-security applications such as those found in banking, government, and military environments. However, QKD systems contain implementation non-idealities which can negatively impact their performance and security.In particular, QKD systems often employ the decoy state protocol to improve system throughput and mitigate the threat of Photon Number Splitting (PNS) attacks. In this work, a detailed analysis of the decoy state protocol is conducted which optimizes both performance in terms of quantum throughput and security with respect to detecting PNS attacks. The results of this study uniquely demonstrate that the decoy state protocol can ensure PNS attacks are detected with high confidence, while maximizing the secure key generation rate at no additional cost. Additionally, implementation security guidance is provided for QKD system developers and users
    • …
    corecore