1,824 research outputs found

    Symbol synchronization in convolutionally coded systems

    Get PDF
    Alternate symbol inversion is sometimes applied to the output of convolutional encoders to guarantee sufficient richness of symbol transition for the receiver symbol synchronizer. A bound is given for the length of the transition-free symbol stream in such systems, and those convolutional codes are characterized in which arbitrarily long transition free runs occur

    Berufliches Selbstverständnis und Einflußmöglichkeiten von Schulleitern: Ergebnisse einer Schulleiterbefragung

    Get PDF

    Initiation of hepatitis C virus infection is dependent on cholesterol and cooperativity between CD81 and scavenger receptor B type I.

    Get PDF
    In the past several years, a number of cellular proteins have been identified as candidate entry receptors for hepatitis C virus (HCV) by using surrogate models of HCV infection. Among these, the tetraspanin CD81 and scavenger receptor B type I (SR-BI), both of which localize to specialized plasma membrane domains enriched in cholesterol, have been suggested to be key players in HCV entry. In the current study, we used a recently developed in vitro HCV infection system to demonstrate that both CD81 and SR-BI are required for authentic HCV infection in vitro, that they function cooperatively to initiate HCV infection, and that CD81-mediated HCV entry is, in part, dependent on membrane cholesterol

    Pediatric Automatic Sleep Staging: A comparative study of state-of-the-art deep learning methods.

    Get PDF
    Despite the tremendous progress recently made towards automatic sleep staging in adults, it is currently unknown if the most advanced algorithms generalize to the pediatric population, which displays distinctive characteristics in overnight polysomnography (PSG). To answer the question, in this work, we conduct a large-scale comparative study on the state-of-the-art deep learning methods for pediatric automatic sleep staging. Six different deep neural networks with diverging features are adopted to evaluate a sample of more than 1,200 children across a wide spectrum of obstructive sleep apnea (OSA) severity. Our experimental results show that the individual performance of automated pediatric sleep stagers when evaluated on new subjects is equivalent to the expert-level one reported on adults. Combining the six stagers into ensemble models further boosts the staging accuracy, reaching an overall accuracy of 88.8%, a Cohens kappa of 0.852, and a macro F1-score of 85.8%. At the same time, the ensemble models lead to reduced predictive uncertainty. The results also show that the studied algorithms and their ensembles are robust to concept drift when the training and test data were recorded seven months apart and after clinical intervention. However, we show that the improvements in the staging performance are not necessarily clinically significant although the ensemble models lead to more favorable clinical measures than the six standalone models. Detailed analyses further demonstrate "almost perfect" agreement between the automatic stagers to one another and their similar patterns on the staging errors, suggesting little room for improvement

    Short- and long-term joint symbolic dynamics of heart rate and blood pressure in dilated cardiomyopathy

    Get PDF
    Š 2005 IEEE.Autonomic cardiovascular control involves complex interactions of heart rate and blood pressure. In patients with dilated cardiomyopathy (DCM), this control is impaired and parameters for its quantification might be of prognostic importance. In this paper, we introduce methods based on joint symbolic dynamics (JSD) for the enhanced analysis of heart rate and blood pressure interactions. To assess the coarse-grained dynamics beat-to-beat changes of heart rate and blood pressure are encoded in symbol strings. Subsequently, the distribution properties of short symbol sequences (words) as well as the scaling properties of the whole symbol string are assessed. The comparison of joint symbolic heart rate and blood pressure dynamics in DCM (n=75) with those in healthy controls (n=75) showed significant changes. Both, the distribution of words and the scaling properties indicate a loss in heart rate dynamics associated with blood pressure regulation in DCM. In conclusion, the analyses of short- and long-term JSDs provide insights into complex physiological heart rate and blood pressure interactions and furthermore reveal patho-physiological cardiovascular control in DCM.Baumert, M.; Baier, V.; Truebner, S.; Schirdewan, A.; Voss, A

    High-resolution spectroscopy of triplet states of Rb2 by femtosecond pump-probe photoionization of doped helium nanodroplets

    Full text link
    The dynamics of vibrational wave packets in triplet states of rubidium dimers (Rb2) formed on helium nanodroplets are studied using femtosecond pump-probe photoionization spectroscopy. Due to fast desorption of the excited Rb2 molecules off the droplets and due to their low internal temperature, wave packet oscillations can be followed up to very long pump-probe delay times >1.5ns. In the first excited triplet state (1)^3\Sigma_g^+, full and fractional revivals are observed with high contrast. Fourier analysis provides high-resolution vibrational spectra which are in excellent agreement with ab initio calculations

    Adaptive Dispersion Compensation for Remote Fiber Delivery of NIR Femtosecond Pulses

    Full text link
    We report on remote delivery of 25 pJ broadband near-infrared femtosecond light pulses from a Ti:sapphire laser through 150 meters of single-mode optical fiber. Pulse distortion due to dispersion is overcome with pre-compensation using adaptive pulse shaping techniques, while nonlinearities are mitigated using an SF10 rod for the final stage of pulse compression. Near transform limited pulse duration of 130 fs is measured after the final compression.Comment: 3 pages, 4 figure

    Proprioceptive feedback facilitates motor imagery-related operant learning of sensorimotor β-band modulation

    Get PDF
    Motor imagery (MI) activates the sensorimotor system independent of actual movements and might be facilitated by neurofeedback. Knowledge on the interaction between feedback modality and the involved frequency bands during MI-related brain self-regulation is still scarce. Previous studies compared the cortical activity during the MI task with concurrent feedback (MI with feedback condition) to cortical activity during the relaxation task where no feedback was provided (relaxation without feedback condition). The observed differences might, therefore, be related to either the task or the feedback. A proper comparison would necessitate studying a relaxation condition with feedback and a MI task condition without feedback as well. Right-handed healthy subjects performed two tasks, i.e., MI and relaxation, in alternating order. Each of the tasks (MI vs. relaxation) was studied with and without feedback. The respective event-driven oscillatory activity, i.e., sensorimotor desynchronization (during MI) or synchronization (during relaxation), was rewarded with contingent feedback. Importantly, feedback onset was delayed to study the task-related cortical activity in the absence of feedback provision during the delay period. The reward modality was alternated every 15 trials between proprioceptive and visual feedback. Proprioceptive input was superior to visual input to increase the range of task-related spectral perturbations in the ι- and β-band, and was necessary to consistently achieve MI-related sensorimotor desynchronization (ERD) significantly below baseline. These effects occurred in task periods without feedback as well. The increased accuracy and duration of learned brain self-regulation achieved in the proprioceptive condition was specific to the β-band. MI-related operant learning of brain self-regulation is facilitated by proprioceptive feedback and mediated in the sensorimotor β-band
    • …
    corecore