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Short- and Long-Term Joint Symbolic Dynamics of Heart
Rate and Blood Pressure in Dilated Cardiomyopathy

Mathias Baumert, Vico Baier, Sandra Truebner,
Alexander Schirdewan, and Andreas Voss*

Abstract—Autonomic cardiovascular control involves complex inter-
actions of heart rate and blood pressure. In patients with dilated
cardiomyopathy (DCM), this control is impaired and parameters for
its quantification might be of prognostic importance. In this paper, we
introduce methods based on joint symbolic dynamics (JSD) for the en-
hanced analysis of heart rate and blood pressure interactions. To assess
the coarse-grained dynamics beat-to-beat changes of heart rate and blood
pressure are encoded in symbol strings. Subsequently, the distribution
properties of short symbol sequences (words) as well as the scaling prop-
erties of the whole symbol string are assessed. The comparison of joint
symbolic heart rate and blood pressure dynamics in DCM (n = 75)
with those in healthy controls (n = 75) showed significant changes.
Both, the distribution of words and the scaling properties indicate a loss
in heart rate dynamics associated with blood pressure regulation in DCM.
In conclusion, the analyses of short- and long-term JSDs provide insights
into complex physiological heart rate and blood pressure interactions and
furthermore reveal patho-physiological cardiovascular control in DCM.

Index Terms—Blood pressure variability, dilated cardiomyopathy, heart
rate variability, symbolic dynamics.

1. INTRODUCTION

The analysis of heart rate variability (HRV) provides clinically rel-
evant insights into autonomic control [1]. Short-term HRYV is strongly
connected with blood pressure regulation through the baroreflex (i.e.
the compensation of rapid blood pressure changes via heart rate adjust-
ment) [2]. Consequently, only the bivariate analysis of heart rate and
blood pressure variability can provide insights into such mechanisms of
cardiovascular control. Several standard signal processing tools, such
as cross-correlation [3], cross-spectral analysis [4] or model based ap-
proaches [5] were applied. However, the mostly used approach to esti-
mate the baroreflex sensitivity is the sequence method [6] (see Methods
section).

Since the relationship between heart rate and blood pressure involves
complex interactions, they cannot be sufficiently described by linear
models [7]. Some of the already introduced bivariate nonlinear ap-
proaches include mutual information [8] and conditional entropy [9]. In
this paper, we present a new methodology for heart rate and blood pres-
sure interaction analysis based on their short- and long-term joint sym-
bolic dynamics (JSD). The concept of symbolic dynamics goes back
to J. S. Hadamard (1898) [10] and allows a simplified description of
the dynamics of a system with a limited amount of symbols. Methods
based on symbolic dynamics have already been successfully applied to
HRYV analysis providing some more global information about the un-
derlying system [11], [12].
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The introduced methodology was applied to investigate patients with
dilated cardiomyopathy (DCM) who are characterized by a dilated my-
ocardium, an impaired myocardial performance and a high mortality
rate. DCM leads to a reduced HRV as well as a reduced baroreflex sen-
sitivity [13].

II. METHODS

A. Patients and Data Preprocessing

Heart rate and blood pressure data of 75 patients with DCM and 75
healthy controls (CON) with comparable age (CON: 48 £ 10 years
versus DCM: 50 £ 8 years) were analyzed. All patients had a stable
sinus rhythm during recording and were under medical treatment. Ec-
topic beats of 0.09 [0-0.46] % occurred in DCM patients (median [in-
terquartil range]) whereas a total of 57 ectopic beats occurred in 12
controls. High-resolution ECG and continuous blood pressure (Por-
tapres M2 monitor, volume clamp method) were recorded under stan-
dardized resting conditions in supine position over 30 min. Time se-
ries of beat-to-beat intervals (BBI) and systolic blood pressure values
(SP) were extracted automatically and, thereafter, visually inspected.
Ectopic beats were determined, removed and interpolated using an al-
gorithm based on local variance estimation [14].

B. Joint Symbolic Dynamics
In X (1), BB and 25F are n beat-to-beat values of BBI and SP,

respectively
1T
X = {[wnﬁl,x;“f] } v €R (1)
n=0,1,...
X is transformed in S (2) defined as
«p1
S = {[SEBI, sff’} } s€0,1 @)
n=0,1,...

with the following definitions:

e [0 (_TEBI _ T]g_lﬂ) < [BBI
Sn = { 1 (iUEBI _ ‘L]’?E{) ~ [BBI
sp_ f 0 (2R —aihy) <1
i P S N v

where threshold value [ is set zero. Thus, increases between two suc-
cessive BBI and SP, respectively are coded as “1” and consequently de-
creases and equilibrium are coded as “0.” Subsequently, S is subdivided
into short sequences with a certain length. Each single word is obtained
by a shift of one within the symbol string S [15]. The length of words is
limited due to the requirement of a statistically sufficient representation
of each single word type. To estimate the number of word types (his-
togram classes), the v/ IV approximation for histogram construction of
N observations was used. For 30-min recordings (assumed mean heart
rate: 80 bpm) there are no more than 64 different word types feasible.
Taking into account the four different symbol combinations within S
(the alphabets of BBI as well as SP consist each of two elements),
words with a maximum length of three are realizable (2° x 2* = 64).
Therefore, this approach is able to map the dynamics of BBI and SP
within four consecutive heart beats (i.e. three BBI). From the perspec-
tive of phase space this corresponds to a three-dimensional embedding.
Although this embedding is pragmatic rather then a true reconstruction
of the system, several studies could show that a three-dimensional em-
bedding of HRYV is suitable to map the short-term dynamics [11], [16].
Moreover, the embedding dimension should not exceed log,,(N) to
avoid spurious results [17]. Those mapped short-term fluctuations are
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predominantly influenced by respiratory activity and lead to high fre-
quency (HF) oscillations in the power spectrum and the well-known
phenomenon of respiratory sinus arrhythmia. To map longer-term dy-
namics a different approach is required (see Section II-C.).

In a first step, we consider the dynamics of BBI and SP within the
word distribution density matrix W' that contains the frequency of each
of the 8 X 8 possible combinations of BBI and SP patterns (4)

BBIooo,SPooo BBIyoo, SP111
W= : : : (4)
BB11117SP000 BBIlll-, SPlll

The Fuchs—Kennet-Outlier-Test (FKOT) (5) was applied to test
whether the BBI and SP patterns of the particular word types occur
independently and consequently to identify significantly present or
absent word types.

Two observations A and B are independent, if p(A)p(B) = p(A A
B). Consequently, p(AAB) —p(A)p(B) # 0 denotes dependency. In
this context, the FKOT assesses the residuals between observed (W) i)
and expected (E; 1) word type frequencies [numerator of (5)], where
Ejr=(1/N)>,, Wim Y., Wa,« and N denotes the overall number
of words [18].

To test whether those residuals are significant, normalization is per-
formed (denominator of (5)) that takes the (j — 1)(k — 1) degrees of
freedom within W into account. (A frequently occurring word type re-
sults in a low frequency of the other word types in that row and column,
respectively)

Wi — Ejx

f’ﬂ;k ((1 =X Wim = X Wk + Ef=k>

&)

Uj ke =

m

Subsequently, the u; i values are compared with standard normal
distribution tables. Due to the j * k multiple tests within W the sig-
nificance level has to be corrected. Applying the correction proposed
by Bonferoni [19] the corrected value p* for a significance level of
p = 0.05is p™ = 0.05/64 = 0.00078.

Within W each word type was tested with FKOT whether its occur-
rence is below, within or above expectation. Using the standard normal
distribution table values of uj i less than —3.37 reflect a significant
under-representation and uj, values above 3.37 reflect a significant
over-representation of the specific word type.

C. JSD Fractal Scaling Exponent

To investigate the JSD of BBI and SP for long-term correlations,
fractal scaling properties are assessed. Starting with the measured
beat-to-beat-values stored in X, a symbol transformation according to
(6) is suggested
—1: (BB BBL) 5 PRI A (257

1: (mEBT—mEED <IBBTA (TZP

0: eclse

_l:LFJ’rl) > 5P

_SP

Sn = —J,‘nJrl) <ISF (6)

where the threshold value { is set to zero and A denotes logical “AND.”
Thus, in the symbolic vector S synchronous increase of BBI and SP
are coded as “1,” synchronous decreases of BBI and SP are coded as
“—1,” and all other characteristics as “0.” As the baroreflex (i.e. the
blood pressure regulation via heart rate) is the predominant mecha-
nism of short-term heart rate and blood pressure interactions the symbol
coding focuses particularly on those patterns. Therefore, bradycardic
baroreflex responses (i.e. a decrease of heart rate due to blood pres-
sures increases) are coded as symbol “—1” and tachycardic baroreflex
responses (i.e. an increase of heart rate due to blood pressures drops)
are coded as symbol “1.”
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Fig. 1. Scaling properties of the symbol string derived from a healthy control
(grey; JSDa; = 0.68) and Gaussian white noise (black; JSDa; =
0.33). F'(n)—root mean square of the detrended time series; m—box size.

To investigate the presence of scaling invariance the detrended fluc-
tuation analysis proposed by Peng et al. was applied [20]. The method
works as follows.

1) Compute the cumulative sum c(k) = Zf:l[s(k) — 5] of the
symbol string S where 5 is the mean of S (using the concept of
random-walk-analysis).

2) Compute the local trend ¢, (k) within boxes of varying sizes n
(least square fit).

3) Compute the root mean square of the detrended time
series in dependency on box size n as F(n) =
\/(1/N) SV [e(k) = e (K)]?, where N denotes the size
of S.

4) Plot log,, F(n) against log,, n.

In the presence of scaling invariance, there is a linear relationship be-
tween log,, F(n) and log,, n. As a measure of long-term correlation
the scaling exponent « is computed (i.e. the slope of the line relating
log,, F(n) to log;, n) using least square fit (see Fig. 1). Values of
0 < a < 0.5 are associated with anti-correlation (i.e. large and small
values of the time series are likely to alternate). For Gaussian white
noise (i.e. random walk) « is 0.5. Values of 0.5 < o < 1 suggest the
presence of power-law long-term correlations (i.e. large values of the
time series are likely to be followed by large values) whereas o = 1
represents 1/f scaling. Values of & > 1 represent long-term correla-
tions, but are different from the power-law.

For HRV analysis, two different regions of fractal scaling were found
[20]. A characteristic break within the linear scaling graph was reported
at a box size of n = 16 and consequently suggested to compute two
separate scaling exponents «; for the range n = 4 ton = 16 and a»
for the range n = 16 to n = 64.

D. Tests With Simulated Data

To assess the impact of noise on the JSD, two independent Gaussian
white noise processes were simulated for BBI and SP, respectively. To
meet the 30-min recording length of the original data ten realizations
were generated each consisting of 2000 values. The word distribution
density matrix as well as the fractal scaling exponents were computed
for all realizations and, thereafter, averaged.

E. Sequence Method

In a very simple model, the baroreflex is assumed to be a linear
relationship between SP and BBI and the transfer factor is termed
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baroreflex sensitivity (BRS = ABBI/ASP). For baroreflex sen-
sitivity estimation according to the sequence method, least square
fit linear regression is performed between sequences SP; of mono-
tonic increasing blood pressure (SP; = [SP,,SPpt1,SPphyso]
where SP,42» > SP,41 > SP,) that are followed by se-
quences BBI; of monotonic increasing beat-to-beat intervals
(BBL = [BBInJrh BBIn+2, BBIn+J] where BBInJr;; > BBIn+2 >
BBI,.11). The average of the regression line slopes a;(SP,BBI) of
all I sequences is then the BRS estimate (7)

BRS = > > i(SP;, BBL). (7)

1

~1

1

1

Linear correlation coefficients r.,, between BRS and JSD parame-
ters were computed (8), where @ and y denote the parameters and
and y their means, respectively

n

> (i = B)(yi = §)
L 8)

n

S (i = )2 (i = 07

=1

Fry =

III. RESULTS
A. Short-Term Joint Symbolic Dynamics (Word Distribution Matrix)

The statistical analysis via FKOT showed that some word types
within W are significantly over-represented and other ones are under-
represented. All word types representing symmetric BBI and SP
behavior (i.e. "Vl, 1, I"T/'7272, [’1’7373 . I/I/'M, VV575 s I’VS,G, ‘/V7,7, and [’1"78,8)
occur frequently, whereas some word types representing diametric be-
havior (i.e. W« o, W5 4, Wy 5, and W 1) occur significantly seldom.
Interpreting the former ones as baroreflex patterns and latter ones as
missing or a lack of baroreflex responses the diagonals of the matrix
were summed up: JSDsym = (1/N) Zj: w1 W r—representing
symmetric word types and JSDdiam = (1/N) ijk:l Wio—t—
representing diametric word types within W.

In addition to the diagonals, there were some further significant word
types. In both groups, word types W5 1, W7 5, Ws 7 and W, s were
over-represented and W~ 4 and W5 5 were under-represented. Further,
W1 ,2 was over-represented and W, 1, Ws > and W5 » were under-rep-
resented only in CON and W5 4 was over-represented only in DCM. To
consider the overall distribution the Shannon entropy within W was
computed JSDshannon = -— ijzl [(W;k/N)log,(W; i /N)].
Comparing JSDsym, JSDdiam, and JSDshannon between CON
and DCM there was a significant increase of JSDdiam in DCM.

B. Long-Term Joint Symbolic Dynamics (Scaling Exponent)

The analysis of scaling properties of the JSD showed a behavior
similar to those of heart rate time series (see Fig. 1). The plot reveals
scaling invariance in two regions. Therefore, two different scaling
exponents were computed using the box sizes as proposed by Peng:
JSDa; —scaling exponent for n = 4 to n = 16; JSDay—scaling
exponent for n = 16 to n = 64. In general, the slope in the small
box size region (JSDay ) was higher than in the larger box size region
(JSDas). The comparison of DCM with CON (see Table I) showed
significant differences in the scaling exponent JSD«¢ but not in
JSDas.

C. Gaussian White Noise

Comparing the JSD parameters taken by the Gaussian white noise
processes with those of the measured data of CON and DCM there were
significances in JSDsym, JSDdiam, JSDshannon and JSDa; (see
Table I). Contrary, the JSDa> exponents were all clustered together.
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TABLE 1
COMPARISON OF THE JSD PARAMETERS BETWEEN DCM PATIENTS,
CONTROLS (CON) AND GAUSSIAN WHITE NOISE (GWN).
TEST1—CON VERSUS DCM; TEST2—GWN VERSUS CON+DCM;
SD—STANDARD DEVIATION; SIGNIFICANCE LEVEL: p* = 0.01
(BONFERONI CORRECTED); N.S.—NOT SIGNIFICANT

CON DCM GWN Testl Test2
parameter mean SD mean SD Mean SD p p
JSDsym 0.34 0.14 031 0.15 0.15 0.01 ns. <0.001
JSDdiam 0.04 0.03 0.05 0.05 0.16 0.01 0.006 <0.001
JSDshannon 3.50 0.28 3.52 0.36 3.85 0.07 ns. 0.001
JSDoy 0.56 0.13 049 0.12 039 0.01 0.003 0.002
JSDa, 0.33 0.05 035 0.07 033 0.02 ns. n.s.

TABLE 1I

PEARSON’S LINEAR CORRELATION COEFFICIENTS BETWEEN JSD PARAMETERS
AND BAROREFLEX SENSITIVITY. (*—significance < 0.05;
“* —gignificance < 0.01)

parameter BRS
JSDsym 0.26%*
JSDdiam -0.25%*
JSDshannon -0.07
JSD o, 0.19%

(* - significance <0.05; ** - significance <0.01)

D. Correlation of JSD Parameters With Baroreflex Sensitivity

The baroreflex sensitivity was significantly reduced in DCM com-
pared with CON (CON: 12.3 & 7.9 versus DCM: 6.3 £ 4.9; p <
0.001). The correlation analysis (see Table II) could not prove inde-
pendence between JSD and BRRS (except of JSDshannon). However,
the linear correlations between JSD parameters and BRS were weak.

IV. DISCUSSION

The analysis of the JSD of BBI and SP by means of a word dis-
tribution matrix showed the presence of deterministic components as
well as correlations between BBI and SP. Applying the Fuchs-Kennet-
Outlier-Test we concluded that this approach is able to quantify dy-
namics underlying the heart rate and blood pressure regulation. Al-
though this test was originally designed for independent samples it also
provides the detection of statistically over- and under-represented word
types. The word distribution matrix in DCM revealed a significantly
increased number of diametric word types in comparison with that of
CON. Since those word types map in an abstract manner a behavior
oppositional to the typical baroreflex response, this finding might be
partly interpreted as a loss of baroreflex mediated regulation in DCM.
Furthermore, the number of frequent or seldom word types was less in
DCM than in CON. This also points at a loss of HRV mediated by an
impaired blood pressure regulation in DCM that has been described by
other authors [21].

The analysis of the JSD scaling properties showed that the proposed
symbol coding maps joint heart rate and blood pressure dynamics up
to box sizes of 16 heart beats since the JSD«; values of measured BBI
and SP data were far from of those of Gaussian white noise. JSDa;
of Gaussian noise is considerably less than 0.5 (i.e. random walk) due
to the symbol coding where symbol ‘0’ is more likely than symbol
“1” and “—1,” respectively. In CON, JSDe«y was slightly above 0.5
and, therefore, suggests the presents of long-term correlations. Consid-
ering that the symbol coding focused only on baroreflex response-like
patterns, this finding is in accordance with the understanding of the
underlying physiology. The sympathetically mediated baroreflex has
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duration of about ten seconds [22] and would result in a long-term
correlation within the symbol string that is covered by the box sizes
of JSDa; . Contrary, JSDa, was less than 0.5 in DCM. This finding
might partly result from alternans phenomena that were already ob-
served in heart rate and blood pressure time series of DCM patients
[23]. JSDas does not reflect baroreflex-like heart rate and blood pres-
sure interactions and seems to be mainly affected by noise as the values
are clustered with those of the simulated Gaussian process. Possibly,
higher threshold values for the symbol coding might lead to a better
distinction of scaling phenomena and should, therefore, be a subject of
future investigations.

The weak correlations between JSD parameters and BRS computed
with the sequence method (i.e. the standard measure for heart rate and
blood pressure interaction analysis) on one hand, and the significant
differences of the diametric word types (short-term) and « -scaling
exponents (long-term) between CON and DCM on the other hand,
endorse the importance of supplementary methods for interaction
analyses and, furthermore, recommend the approach proposed here.
In an advantage over standard methods, short- and long-term JSD also
consider nonlinear interactions and furthermore provide easy-to-inter-
pret physiological patterns. Therefore, this might be a useful tool for
enhanced analyses of DCM as well as other cardiovascular diseases.
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Decomposition of Three-Dimensional Medical Images Into
Visual Patterns

Raquel Dosil*, Xosé M. Pardo, and Xosé R. Fdez-Vidal

Abstract—In this paper, we present a method for the decomposition of
a volumetric image into its most relevant visual patterns, which we define
as features associated to local energy maxima of the image. The method
involves the clustering of a set of predefined bandpass energy filters ac-
cording to their ability to segregate the different features in the image, thus
generating a set of composite-feature detectors tuned to the specific visual
patterns present in the data. Clustering is based on a measure of statistical
dependence between pairs of frequency features. We will illustrate the ap-
plicability of the method to the initialization of a three-dimensional geodesic
active model.

Index Terms—Active model initialization, low level representation, mul-
tiresolution analysis, phase congruence.

I. OBJECTIVES

In this paper, we present a method for low-level representation of
three-dimensional (3-D) images consisting on the identification its
most relevant low-level features, which we call visual patterns. Some
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