314 research outputs found

    HIV Transmission and Peer Influence on Female Sex Workers in India

    Full text link
    Articlehttp://deepblue.lib.umich.edu/bitstream/2027.42/96982/1/UMURF-Issue05_2008-SBaumann.pd

    Advancing the Business and Human Rights Agenda: Dialogue, Empowerment, and Constructive Engagement

    Get PDF
    As corporations are going global, they are increasingly confronted with human rights challenges. As such, new ways to deal with human rights challenges in corporate operations must be developed as traditional governance mechanisms are not always able to tackle them. This article presents five different views on innovative solutions for the relationships between business and human rights that all build on empowerment, dialogue and constructive engagement. The different approaches highlight an emerging trend toward a more active role for corporations in the protection of human rights. The first examines the need for enhanced dialogue between corporations and their stakeholders. The next three each examine a different facet of empowerment, a critical factor for the respect and protection of human rights: empowerment of the poor, of communities, and of consumers. The final one presents a case study of constructive corporate engagement in Myanmar (Burma). Altogether, these research projects provide insight into the complex relationships between corporate operations and human rights, by highlighting the importance of stakeholder dialogue and empowerment. All the five projects were presented during the Second Swiss Master Class in Corporate Social Responsibility, held in Lausanne, Switzerland on December 12, 2008. The audience for this conference, which examined business and human rights, was composed of researchers, governmental representatives, and business and non-governmental organization practitioner

    Epitaxial Cobalt Oxide Films with Wurtzite Structure on Au(111)

    Get PDF
    Several-nanometer-thick, closed, and epitaxial cobalt(II) oxide films with wurtzite crystal structure (w-CoO) are grown on Au(111) and their structural and electronic properties analyzed. The structural quality of the (Formula presented.) oriented, oxygen-terminated, and unreconstructed films allow the application of surface-science methods to unravel the properties of this unusual polymorph of CoO and may pave the way for future thin-film applications. An experimental structural analysis by low-energy electron diffraction (LEED-IV) is presented with an excellent agreement between measured and calculated intensity spectra expressed by a Pendry R-factor of (Formula presented.) and few-picometer error bounds in the parameter values. Using scanning tunneling spectroscopy (STS) the bandgap of the semiconducting films is found to be 1.4 ± 0.2 eV. Ultraviolet photoelectron spectroscopy (UPS) confirms the presence of a gap and the position of the Fermi level (E F). The structural results of density functional theory calculations using (hybrid) functionals to treat electron correlations and van der Waals forces agree well with the experimentally determined structure of the antiferromagnetic w-CoO films. In contrast to generalized gradient approximation (GGA)+U calculations, the Heyd–Scuseria–Ernzerhof hybrid functional reproduces the semiconducting nature correctly and predicts surface states in the gap which might pin E F in agreement with STS and UPS

    Influence of Encapsulation Process Temperature on the Performance of Perovskite Mini Modules

    Get PDF
    Perovskite-on-silicon tandem solar cells are a promising candidate to significantly increase the efficiency of PV modules. Despite the fast research progress on material and solar cells aspects, there is still a lack of processes for an industrial module integration of these devices. One aspect hereby is the adaption of encapsulation materials and processes to the requirements of perovskite materials. Process temperatures of about 150 °C are necessary to use well proven, in silicon PV commonly applied encapsulation materials with a high reliability. However, perovskites start to decompose into their components at high temperatures. This limits the encapsulation process temperature, which in turn constraints the choice of encapsulation materials. This work presents an encapsulation process for methylammonium lead iodide (MAPhb) single junction perovskite solar cells (PSCs) with conventional production tools in glass-glass modules that serves as a model system for perovskite tandem applications. We evaluate the influence of the encapsulation process temperature between 120 °C and 160 °C on the performance of mini modules. The UV-absorbing encapsulation material is processable over the whole investigated temperature regime. We observe a difference in the IV-characteristics between the PSCs encapsulated in the temperature range of 120 °C - 140 °C to those processed at 160 °C. At lower encapsulation temperatures the IV-curves taken 1 h after encapsulation show a pronounced S-shape and no degradation of Foe. In contrast, the PSCs encapsulated at 160 °C exhibit a Foe decrease of up to 29% compared to the initial measurement shortly after PSC fabrication and no significant S-shape. Both, the S-shape that occurs at low encapsulation temperatures and the Foe loss after encapsulation at 160 °C, are no longer significant after one week of module storage under dark conditions. The presented encapsulation process therefore does not permanently damage the MAPbb PSCs even at a standard encapsulation temperature of 160 °C. To ensure long-term operation, we test the fabricated mini modules in a damp heat test at 85 °C and a relative humidity of 85%. We find no significant additional degradation caused by damp heat in 1250 h test duration compared to a reference module stored in ambient air

    A scoping review of frameworks in empirical studies and a review of dissemination frameworks

    Get PDF
    BACKGROUND: The field of dissemination and implementation (D&I) research has grown immensely in recent years. However, the field of dissemination research has not coalesced to the same degree as the field of implementation research. To advance the field of dissemination research, this review aimed to (1) identify the extent to which dissemination frameworks are used in dissemination empirical studies, (2) examine how scholars define dissemination, and (3) identify key constructs from dissemination frameworks. METHODS: To achieve aims 1 and 2, we conducted a scoping review of dissemination studies published in D&I science journals. The search strategy included manuscripts published from 1985 to 2020. Articles were included if they were empirical quantitative or mixed methods studies about the dissemination of information to a professional audience. Studies were excluded if they were systematic reviews, commentaries or conceptual papers, scale-up or scale-out studies, qualitative or case studies, or descriptions of programs. To achieve aim 1, we compiled the frameworks identified in the empirical studies. To achieve aim 2, we compiled the definitions from dissemination from frameworks identified in aim 1 and from dissemination frameworks identified in a 2021 review (Tabak RG, Am J Prev Med 43:337-350, 2012). To achieve aim 3, we compile the constructs and their definitions from the frameworks. FINDINGS: Out of 6017 studies, 89 studies were included for full-text extraction. Of these, 45 (51%) used a framework to guide the study. Across the 45 studies, 34 distinct frameworks were identified, out of which 13 (38%) defined dissemination. There is a lack of consensus on the definition of dissemination. Altogether, we identified 48 constructs, divided into 4 categories: process, determinants, strategies, and outcomes. Constructs in the frameworks are not well defined. IMPLICATION FOR D&I RESEARCH: This study provides a critical step in the dissemination research literature by offering suggestions on how to define dissemination research and by cataloging and defining dissemination constructs. Strengthening these definitions and distinctions between D&I research could enhance scientific reproducibility and advance the field of dissemination research

    Arc is a flexible modular protein capable of reversible self-oligomerization

    Get PDF
    The immediate early gene product Arc (activity-regulated cytoskeleton-associated protein) is posited as a master regulator of long-term synaptic plasticity and memory. However, the physicochemical and structural properties of Arc have not been elucidated. In the present study, we expressed and purified recombinant human Arc (hArc) and performed the first biochemical and biophysical analysis of hArc's structure and stability. Limited proteolysis assays and MS analysis indicate that hArc has two major domains on either side of a central more disordered linker region, consistent with in silico structure predictions. hArc's secondary structure was estimated using CD, and stability was analysed by CD-monitored thermal denaturation and differential scanning fluorimetry (DSF). Oligomerization states under different conditions were studied by dynamic light scattering (DLS) and visualized by AFM and EM. Biophysical analyses show that hArc is a modular protein with defined secondary structure and loose tertiary structure. hArc appears to be pyramid-shaped as a monomer and is capable of reversible self-association, forming large soluble oligomers. The N-terminal domain of hArc is highly basic, which may promote interaction with cytoskeletal structures or other polyanionic surfaces, whereas the C-terminal domain is acidic and stabilized by ionic conditions that promote oligomerization. Upon binding of presenilin-1 (PS1) peptide, hArc undergoes a large structural change. A non-synonymous genetic variant of hArc (V231G) showed properties similar to the wild-type (WT) protein. We conclude that hArc is a flexible multi-domain protein that exists in monomeric and oligomeric forms, compatible with a diverse, hub-like role in plasticity-related processes.publishedVersio

    Impact of the COVID-19 pandemic on the implementation of mobile health to improve the uptake of hydroxyurea in patients with sickle cell disease: Mixed methods study

    Get PDF
    BACKGROUND: Hydroxyurea therapy is effective for reducing complications related to sickle cell disease (SCD) and is recommended by National Health Lung and Blood Institute care guidelines. However, hydroxyurea is underutilized, and adherence is suboptimal. We wanted to test a multilevel mobile health (mHealth) intervention to increase hydroxyurea adherence among patients and improve prescribing among providers in a multicenter clinical trial. In the first 2 study sites, participants were exposed to the early phases of the COVID-19 pandemic, which included disruption to their regular SCD care. OBJECTIVE: We aimed to describe the impact of the COVID-19 pandemic on the implementation of an mHealth behavioral intervention for improving hydroxyurea adherence among patients with SCD. METHODS: The first 2 sites initiated enrollment 3 months prior to the start of the pandemic (November 2019 to March 2020). During implementation, site A clinics shut down for 2 months and site B clinics shut down for 9 months. We used the reach, effectiveness, adoption, implementation, and maintenance (RE-AIM) framework to evaluate the implementation and effectiveness of the intervention. mHealth implementation was assessed based on patients\u27 daily app use. Adherence to hydroxyurea was calculated as the proportion of days covered (PDC) from prescription records over the first 12 and 24 weeks after implementation. A linear model examined the relationship between app usage and PDC change, adjusting for baseline PDC, lockdown duration, and site. We conducted semistructured interviews with patients, health care providers, administrators, and research staff to identify factors associated with mHealth implementation and effectiveness. We used a mixed methods approach to investigate the convergence of qualitative and quantitative findings. RESULTS: The percentage of patients accessing the app decreased after March 15, 2020 from 86% (n=55) to 70% (n=45). The overall mean PDC increase from baseline to week 12 was 4.5% (P=.32) and to week 24 was 1.5% (P=.70). The mean PDC change was greater at site A (12 weeks: 20.9%; P=.003; 24 weeks: 16.7%; P=.01) than site B (12 weeks: -8.2%; P=.14; 24 weeks: -10.3%; P=.02). After adjustment, PDC change was 13.8% greater in those with increased app use after March 15, 2020. Interview findings indicated that site B\u27s closure during COVID-19 had a greater impact, but almost all patients reported that the InCharge Health app helped support more consistent medication use. CONCLUSIONS: We found significant impacts of the early clinic lockdowns, which reduced implementation of the mHealth intervention and led to reduced patient adherence to hydroxyurea. However, disruptions were lower among participants who experienced shorter clinic lockdowns and were associated with higher hydroxyurea adherence. Investigation of added strategies to mitigate the effects of care interruptions during major emergencies (eg, patient coaching and health navigation) may insulate the implementation of interventions to increase medication adherence. TRIAL REGISTRATION: ClinicalTrials.gov NCT04080167; https://clinicaltrials.gov/ct2/show/NCT04080167. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/16319
    • …
    corecore