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 Heterogeneity of tumour radiation response forms the biological basis of personalized 
radiation oncology. Towards this approach, robust and rapidly available biomarkers 
informing about the radiobiological characteristics of a given tumour are prerequisite 
to identify eligible patient subgroups for individualized intervention [1–11]. Among 
other radiobiological factors, intrinsic radiation sensitivity of tumour cells represents 
a major component attributing to treatment outcome [3,12–14]. Intrinsic cellular 
radiation sensitivity correlates with the number of residual unrepaired DNA double 
strand breaks (DSBs) [15–17]. Therefore, assessment of intrinsic radiation sensitivity 
through quantification of DNA DSBs has become increasingly utilized in translation 
cancer research [18–20]. Among other proteins involved in DNA damage response 
(DDR), the phosphorylated histone variant H2A, i.e. H2AX, has attracted particular 
attention. Upon irradiation or other exogenous stress, numerous molecules of H2AX 
are rapidly phosphorylated at the flanking sites of chromatin where DSBs have 
been induced forming the so-called cH2AX nuclear foci [21–31]. The fact that 
phosphorylation remains at the sites of DSBs until the end of repair processes before 
the foci are dephosphorylated [32–36] facilitates the study of foci disappearance 
along with the quantitative evaluation of residual DSBs [20,21,23,29,37–41]. In 
several studies both these endpoints have been correlated with cellular radiation 
sensitivity in vitro and in vivo either in tumour or normal tissue samples 
[20,21,23,28,29,31,37,39,41,42]. Taking together, the cH2AX assay is simple, 
sensitive and straightforward method to quantify DSBs in cells and tissues and 
therefore promising for translation into clinical trials. For clinical application, 
we have developed and pre-clinically validated a novel method using residual 
cH2AX foci in ex vivo irradiated tumour specimens [40,43–45]. In the present study 
we analyse data using the optimizedprotocol in 25 patient-derived surgical specimens 
(including 7 previously published [45]) covering a spectrum of 10 tumour types with 



known differences in radiation response, i.e. radiosensitive types such as seminomas 
and resistant types as chondrosarcomas. We hypothesized that the number of residual 
cH2AX foci corresponds to the expected tumour radiation sensitivity. In addition, 
in order to enhance clinical practicability for future studies the data were used for 
simulations to test the robustness of the method when omitting dose levels. 
 
Materials and methods  
Collection and cultivation of patient-derived tumour specimens 
 
The study has been approved by the Ethics Committee of the Medical Faculty of the 
University of Tübingen (426/2013BO1). All the patients included in the study were 
untreated prior to surgical procedure. During collection and cultivation tumour tissues 
were kept in Dulbecco’s MEM culture medium supplemented with 2% HEPES, 1% 
Na-pyruvate, 1% non-essential amino acids, 1% penicillin streptomycin (all 
Biochrom AG, Berlin, Germany) and 10% FBS (PAN Biotech GmbH, Aidenbach, 
Germany). Fresh tumour material was retrieved from surgical specimens and placed 
in 50 ml Falcon tubes (Becton Dickinson International, Heidelberg, Germany) 
containing 15 ml culture medium. Tumour specimens were transported to the 
laboratory and subsequently cut manually with the use of surgical forceps (BD027R, 
B. BRAUN, Aesculap, Tuttlingen, Germany) and scalpels (FEATHER Safety Razor 
Co., Ltd., Osaka, Japan Number 23) into approximately 2–3 mm slices before being 
placed in petri dishes (3.5 cm diameter) coated with a 1.5% agarose layer (A9539, 
Sigma–Aldrich, Germany) containing 3 ml culture media. During all incubation times 
the petri-dishes were kept in 95% humidified atmosphere at 37 _C and 5% CO2. For 
the purpose of the study tumour material from a total of 25 patient tumours with 10 
different tumour histologies was collected (Table 1; n = 3 seminomas, n = 1 
chondrosarcoma, n = 3 urinary bladder carcinomas (Ca), n = 3 colorectal Ca (2 colon 
Ca + 1 rectum), n = 3 breast Ca, n = 1 hepatocellular Ca, n = 3 renal cell Ca, n = 3 
prostate Ca, n = 4 glioblastoma multiforme (GBM) and n = 2 cervix Ca). In one 
GBM patient, the specimen was removed from the analysis because in the 0 Gy 
sample there was no viable tumour part (based on morphological criteria and BrdU 
positivity) and no estimation of the background foci could be performed. Histology 
and selection of malignant cells for analysis were confirmed by an experienced 
pathologist (M.S.). 
 
Experimental design for evaluation of cH2AX foci in ex vivo irradiated 
patient-derived tumour specimens 
 
The experimental design has been previously described [45]. Briefly, after initial 
cultivation for 24 h, the tumour specimens were irradiated typically with 0, 2, 4, 6, 8 
Gy single doses (200 kV, RS225 research system Gulmay Medical LTD, Surrey, 
England; 15 mA; 0.5 mm Cu; dose rate _1 Gy/min). In two tumours, additional doses 
were delivered to the seminoma sample (#1) doses of 3 and 5 Gy and GBM (#1) 10 



Gy (both previously published [45]). Prior to irradiation, medium containing 20 lmol 
pimonidazole (hypoxia marker, Natural Pharmacia International, Belmont, MA, 
USA) and 10 lmol BrdU (proliferation marker, SERVA electrophoresis, Heidelberg, 
Germany) was added to the specimens for 4 h (20 h post start of cultivation). 
Immediately after irradiation, the medium was exchanged. BrdU and pimonidazole 
were added to visualize the microenvironmental parameters at the time of irradiation, 
i.e. viability, proliferation and oxygenation. The specimens were further incubated for 
24 h before they were fixed in 4% formaldehyde and embedded into paraffin. 
 
Tissue staining, imaging and cH2AX foci analysis 
 
The staining procedure has been previously described [43–45]. In brief, three 
consecutive 3 lm specimen cross-sections from the paraffin-embedded tumour 
material were stained for (a) haematoxylin and eosin staining (H&E), (b) BrdU 
(Clone Bu20a, Dako Deutschland GmbH, Hamburg, Germany) and pimonidazole 
(Natural Pharmacia International, Belmont, MA, USA; immunohistochemistry, 
IMH) with ARKTM Kit (animal research kit; Dako Deutschland GmbH, Hamburg, 
Germany) and (c) 40,6-diamidino- 2-phenylindole (DAPI) and cH2AX at Ser139 
(Merck Millipore, Upstate, clone JBW301, Darmstadt, Germany; 
immunofluorescence IMF) with TSATM Kit (T20912, containing goat anti-mouse 
IgG and tyramide labelled with Alexa 488, Life Technologies GmbH, Molecular 
probes, Invitrogen, Darmstadt, Germany). For the evaluation of cH2AX foci a Zeiss 
Axio Imager Z1 Apotome fluorescence microscope controlled by AxioVision 4.8 
software (Carl Zeiss, Jena, Germany) was used as previously described [43–45]. 
Briefly, complete IMH sections were scanned with a digital colour camera 
(AxioCamMRc, Rev.3 Fire Wire, Carl Zeiss, Jena, Germany, 100_ (EC Plan 
Neofluar)) and fields for foci analysis were marked in the scan. In the adjacent IMF 
section the marked fields were identified and 17 individual images/area were 
taken every 0.25 lm on the Z-axis (z-stack) using a monochrome digital camera 
(AxioCamMRm, Carl Zeiss, Jena, Germany; motorized scanning stage, 
Maerzhaeuser, Wetzlar, Germany, 400_, EC Plan Neofluar). The individual images 
were fused into a single stack image for foci analysis. For each tumour specimen, five 
to seven IMF-stacks were taken. Evaluation of cH2AX foci was only performed 
in intact and viable cell nuclei of well oxygenated tumour cells from the outer rim of 
the tumour specimen. The pimonidazole border from the IMH scanned section was 
manually transferred in the corresponding IMF section and 50 cells per dose per 
patientderived tumour sample from the pimonidazole negative (oxic) specimen area 
were randomly selected for analysis. 
 
 
 
 
Statistical analysis 
 



The normalized cH2AX foci value was derived as previously reported [45]. In brief, 
normalization was established to account for aneuploidy, cell cycle effects, partial 
volume effects and background foci. The normalized foci number (nfoci) per tumour 
specimen was calculated from, 
 nfoci=(Area(m)/Area(i))∗Nfoci(i)-cfoci0Gynfoci=Area(m)/Area(i)∗Nfoci(i)-cfoci0Gy 
 
where Area(m) is the mean area of all selected nuclei per individual tumour, Area(i) 
the area of the individual nucleus in which cH2AX foci were evaluated and Nfoci(i) 
the foci number counted in the corresponding nucleus. For each individual tumour a 
mean background value of cH2AX cfoci0Gy was determined in sham-irradiated 
tumour samples. Subsequently the corrected background value of foci was subtracted 
from the corrected value of each individual cell nucleus counted in the irradiated 
samples to generate the normalized foci value (nfoci) per nucleus. In case the 
subtraction was leading to a negative number, the foci value was replaced by zero (0). 
In order to compare the variability of the residual cH2AX foci numbers across the 
tumours with different histologies and also within the same tumour histology, an 
analysis of variance 
 Table 1.  
Characteristics of residual γH2AX nfoci dose response analysis after ex vivo irradiation. For each 
patient-derived specimen, the mean nucleus area included in the calculation of normalized γH2AX 
foci (nfoci) is depicted. The results of the linear regression analysis of residual γH2AX foci dose 
response are shown for each individual patient and for each different tumour type. The p-value 
indicates the significance of the linear regression. 

Tumour type Mean nucleus 
area (SD) (μm2) 

Linear regression analysis 
for each individual tumour 

 

Pooled linear regression 
analysis for each tumour type 

 
Slope (95% 
C.I.)⁎ R squared (r2) Slope⁎ R squared (r2) 

Seminoma Classical 
#1⁎⁎ 90.1 (23.3) 3.89 (3.55–

4.23) 0.56 3.71 0.60 
Seminoma Classical 
#2 94.2 (27.5) 3.69 (3.34–

4.03) 0.64   
Seminoma 
Anaplastic #1⁎⁎ 94.7 (22.2) 2.64 (2.32–

2.96) 0.52 2.64 0.52 

Urinary bladder Ca 71.6 (23.0) 1.64 (1.38– 0.39 2.01 0.41 



Tumour type Mean nucleus 
area (SD) (μm2) 

Linear regression analysis 
for each individual tumour 

 

Pooled linear regression 
analysis for each tumour type 

 
Slope (95% 
C.I.)⁎ R squared (r2) Slope⁎ R squared (r2) 

#1 1.89) 
Urinary bladder Ca 
#2 66.9 (18.3) 2.72 (2.46–

2.97) 0.64   
Urinary bladder Ca 
#3 67.3 (18.0) 2.04 (1.75–

2.33) 0.44   
Colorectal Ca #1 54.7 (20.9) 2.02 (1.70–

2.33) 0.45 1.94 0.40 

Colorectal Ca #2 53.4 (20.7) 1.92 (1.45–
2.39) 0.29   

Colorectal Ca #3 60.1 (24.7) 1.92 (1.71–
2.13) 0.40   

Breast Ca #1 54.7 (20.6) 1.61 (1.41–
1.79) 0.53 1.68 0.45 

Breast Ca #2 56.1 (13.4) 1.45 (1.24–
1.66) 0.43   

Breast Ca #3 62.0 (26.5) 1.99 (1.70–
2.24) 0.45   

Hepatocellular Ca #1 64.8 (18.6) 1.86 (1.61–
2.11) 0.48 1.56 0.26 

Renal cell carcinoma 
#1 49.3 (10.1) 1.48 (1.27–

1.69) 0.44 1.54 0.41 
Renal cell carcinoma 
#2 50.9 (11.8) 1.80 (1.56–

2.03) 0.47   
Renal cell carcinoma 
#3 39.3 (7.1) 1.38 (1.19–

1.55) 0.48   
Prostate Ca #1⁎⁎ 50.0 (11.0) 0.83 (0.72– 0.51 1.41 0.61 



Tumour type Mean nucleus 
area (SD) (μm2) 

Linear regression analysis 
for each individual tumour 

 

Pooled linear regression 
analysis for each tumour type 

 
Slope (95% 
C.I.)⁎ R squared (r2) Slope⁎ R squared (r2) 
0.93) 

Prostate Ca #2⁎⁎ 51.6 (11.0) 2.18 (1.88–
2.47) 0.46   

Prostate Ca #3⁎⁎ 53.8 (12.6) 1.19 (1.04–
1.32) 0.53   

GBM #1⁎⁎ 54.2 (12.1) 1.24 (0.97–
1.51) 0.20 1.07 0.21 

GBM #2⁎⁎ 57.5 (12.0) 0.62 (0.44–
0.80) 0.16   

GBM #3 67.2 (21.9) 1.18 (1.00–
1.37) 0.38   

Cervix Ca #1 57.4 (15.5) 0.58 (0.42–
0.74) 0.21 0.99 0.23 

Cervix Ca #2 58.0 (18.5) 1.18 (0.93–
1.44) 0.25   

Chondrosarcoma #1 47.5 (15.9) 0.74 (0.57–
0.92) 0.22 0.69 0.17 

⁎ 
p-Value < 0.0001. 
Previously published. 

(ANOVA) test was performed (Sheffe test for multiple comparisons). For the 
simulation analysis slopes for individual tumours were calculated omitting various 
dose levels and the ranking of radiation sensitivity was then compared to the ranking 
based on the slope estimated from the full dose response. Statistical analysis was 
performed with STATA 11.0 (STATA Corporation, CollegeStation, TX, USA) and 
graphs were plotted with GraphPad Prism 6 (GraphPad Software, Inc. San Diego, 
CA, USA). Fit comparison was done with likelihood-ratio tests and p-values <0.05 



were considered statistically significant. Fit comparisons were performed using raw 
data and mean values along with error bars are reported for visualization purpose. 
 
Results  
Characteristics of the patient-derived tumour specimens 
 
All the tumour samples expressed a typical staining pattern for BrdU and 
pimonidazole, i.e. with the outer rim of the specimen being predominantly 
pimonidazole-negative and BrdU-positive (data not shown). In total, tumour samples 
from 25 patients with 10 different tumour types were retrieved and 125 tumour 
biopsy-specimens were analysed for residual cH2AX foci (Table 1). This includes 
data from 7 previously published samples [45]. In all the tumours a normal 
(Gaussian) frequency distribution of the nucleus area per each tumour was observed 
(data not shown). There was no systematic difference of the nucleus area across the 
different doses within each individual tumour (data not shown). Therefore a mean 
value of nucleus area over all doses for each individual tumour was used. The values 
of nuclear area ranged from 39.3 lm2 (SD: 7.1) for renal cell Ca to 94.2 lm2 (SD: 
22.2) for anaplastic seminoma (Table 1). For the calculation of the normalized 
residual cH2AX foci value a mean ‘‘background” foci value was used from each 
tumour calculated from the cH2AX foci in the sham-irradiated controls. The 
background cH2AX foci values ranged from zero for urinary bladder cancer 
(#3) and colorectal cancer (#1) to 2.58 (SD: 2.69) for GBM (#3)(data not shown). 
Dose–response of residual cH2AX foci in ex vivo irradiated patientderived 
tumour samples 
 
Fig. 1 depicts a representative staining pattern of residual cH2AX foci 24 h post 4 Gy 
irradiation for each tumour type. In all tumour samples a significant linear increase of 
residual cH2AX foci with increasing radiation dose was observed and the slope of the 
dose–response as parameter of intrinsic radiation sensitivity was derived (Fig. 2). In 
Fig. 3 the tumour types are ranked according to their slope values with at one end of 
the spectrum the sensitive types such as seminomas with large slope values indicating 
high number of residual foci and on the other hand resistant tumour types such as 
sarcoma and GBM with small slope values. ANOVA with Sheffe correction of the 
pooled slope data per tumour type (Table 1) revealed that the variance within a given 
tumour type is less pronounced than across different types (Sum of Squares (SS) 
between groups: 19.8, SS within groups: 2.4; p < 0.0001). Simulation analysis of 
slope estimation and number of dose levels To explore whether the labour-intense 
manual microscopy visualization and quantification of cH2AX foci with five 
different dose levels can be simplified without compromising robustness, we used the 
datasets to perform simulations where dose levels were systematically excluded and 
the slopes were compared to the slopes estimated from full dose–response 
relationship considered as reference. Five different scenarios with one to three dose 
levels were analysed. Based on the slope of full dose response patients were stratified 



into sensitive (>75% percentile), moderate (25–75% percentile) or resistant (<25% 
percentile; Supplementary Fig. 1). The ranking method is arbitrary and was 
established empirically due to a lack of standardization. This stratification was used 
for comparison with the other scenarios (0–4–8 Gy, 0–2–4 Gy, 0–2–6 Gy, 0–6 Gy, 0–
8 Gy). The results are summarized in 
Supplementary Tables 2–6 and Figs. 2–6 and suggest that dose levels might be 
omitted without major changes in the stratification as long as high doses such as 6 or 
8 Gy are included. 
 
Discussion  
In the present study we applied our optimized protocol of the cH2AX ex vivo assay 
to determine intrinsic radiation sensitivity in 25 samples from 10 different tumour 
types with known differences in tumour radiation sensitivity. The analysis includes 
previously published data from 7 samples [45]. The slopes of the residual cH2AX 
foci dose–response curves were different by a factor of more than five across the 
tumour types (Fig. 3). Importantly, the ranking of the slopes was found to be 
consistent with the expected radio-responsiveness, i.e. high values in sensitive tumour 
types such as seminomas and low values in resistant tumour types such as 
chondrosarcomas and GBM [46–48]. This finding supports the initial hypothesis that 
the cH2AX ex vivo data correlate with expected radio-responsiveness in a panel of 
sensitive, moderate and resistant tumours types. The data also support the concept 
that intrinsic radiation sensitivity of tumour cells contribute to tumour radiation 
response while there is large overlap between different tumour types. It is important 
to note that also other radiobiological factors such as tumour hypoxia contribute to 
tumour radiation response and need to be assessed in order to precisely 
predict outcome. Our assay is specifically optimized to assess intrinsic radiation 
sensitivity without being affected by alterations of the microenvironment ex vivo 
during sampling and cultivation. In the present study, no attempts were made to 
assess the extentof tumour hypoxia in situ. Conceptually, intrinsic radiation 
sensitivity is assessed under oxygenated conditions in the outer rim of 
the ex vivo reoxygenated specimen [45]. Pimonidazole and BrdU were only added to 
assure that foci are counted solely in viable, proliferating and well oxygenated 
tumour areas. For future studies it will become important to combine tests of intrinsic 
radiation sensitivity with hypoxia assessment [49] and gene signatures [50], e.g. by 
functional imaging or gene expression profiles, and other biomarkers. We have 
recently started a prospective trial to develop a decision-support-model in head and 
neck cancer patients including cH2AX ex vivo foci assay, functional imaging, 
radiomics, genomics and clinico-pathological factors. In the first step, we 
prospectively collect data for creating predictive models using systems biology 
approaches and advanced data science. In a second step, we will independently 
validate the model using biopsies and surgical specimens for future interventional 
studies, i.e. assigning individual radiation dose with or without prior surgery. To our 
knowledge we present here first dataset on a panel of tumour types using the cH2AX 



ex vivo foci assay to determine radiation sensitivity. Similarly, freshly excised 
tumour material for functional tests have been used by others. Tumour samples from 
breast cancer patients were ex vivo irradiated and the subsequentformation of RAD51 
foci was used to detect defects in homologous recombination repair (HRR) of DSBs 
to identify patients for PARP inhibition [51]. Importantly, in contrast to our method 
the Rad51 assay is specific for HRR and was not aimed to determine radiation 
sensitivity across different tumour types. Similar experiments have been performed in 
patient-derived ovarian cancer xenografts [52]. Differences in intrinsic radiation 
sensitivity across and among different tumour types have been shown before with the 
SF2 assay, i.e. the surviving fraction after 2 Gy [12–14]. Overall, it appears that our 
first data in 10 different tumour types are in line with the SF2 experience. Despite the 
promising results and the potential for patient stratification [53,54] the SF2 assay was 
not further developed to be integrated in clinical trials testing individualized radiation 
oncology. This was among other reasons due to technical and methodological issues 
resulting in a limited success rate and a long duration of the assay. We believe that 
the proposed ex vivo cH2AX assay presented here can overcome these limitations by 
providing rapid results (within few days) at a very high success rate. In addition, the 
ex vivo cH2AX assay can further be optimized towards higher clinical practicability 
such as the use of automated microscope counting software [55,56] and the omission 
of dose levels without compromising robustness (Suppl. Figs. 1–6). The latter 
analysis is limited by the fact that the ranking system used was arbitrarily and 
empirically defined as no standardized reference system exists. Further limitations of 
the present studies include sampling error, sample size and lack of external 
validation, potential effects of the ex vivo manipulation of the tissues. While the 
present study demonstrates large differences in intrinsic radiation sensitivity across 
different tumour types, the next step towards utilizing the assay for personalized 
radiation oncology would be to apply it in a sufficiently large number of tumours of 
the same type and correlate the data with established clinic-pathological parameters 
and patient outcome. Furthermore, the accuracy of the assay will critically depend on 
the variability of intrinsic radiation sensitivity across an individual tumour, i.e. on the 
sampling error. Both issues are addressed in an ongoing study in a cohort of prostate 
cancer patients. In conclusion, we confirm the clinical feasibility of the cH2AX 
ex vivo assay. The slopes of the residual foci number per dose unit are well in line 
with the expected differences in radioresponsiveness of different tumour types 
implying that intrinsic radiation sensitivity contributes to tumour radiation response. 
Thus, this assay has a promising potential for individualized radiation oncology and 
prospective validation is warranted. 
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Fig. 1. Typical staining pattern of residual cH2AX foci: representative immunofluorescent images of residual cH2AX foci 24 h after 
4 Gy ex vivo irradiation of patient-derived specimens are shown for each different tumour type included in the study. Original image 
magnification 400_. DNA DSB marker cH2AX foci in green (Alexa 488) and DNA counterstain in blue to visualize the cell nuclei 
(DAPI). Heterogeneity in the cell nuclear area can be observed (Table 1). The patient tumour sample used for the generation of the 
image, numbered according to Table 1 is also noted. The large cH2AX positive areas in some of the samples, e.g. seminoma, were 
not evaluated in the foci analysis and may represent either tumour cells in S phase, inflammatory cells or cells undergoing necrosis or 
apoptosis. 
 
 
 
 
  



 
 
 
 
 

 Fig. 2. Dose–response of residual cH2AX foci in ex vivo irradiated patient-derived tumour samples: linear regression 
analysis of residual cH2AX nfoci dose response across the different tumour types for each individual patient evaluated 
(Table 1). Patient-derived tumour specimen from different tumour types with known differences in clinical radiation 
sensitivity irradiated ex vivo with graded single doses after 24 h cultivation prior to irradiation. Symbols represent mean 
values of residual cH2AX nfoci quantified inat least 50 cells per dose level and error bars 95% confidence intervals. 
The parameters of the linear regression analysis (slope value, r-squared, p-value) for each patientderived specimen are 
noted. For cervix cancer #2 the sample irradiated with 6 Gy did not contain evaluable cells and was therefore omitted 
from the analysis. 
  
 
 

 Fig. 3. The slope of the dose–response of the cH2AX nfoci in relation to the different tumour types with known 
differences in clinical radiation response. The slope value of each individual patient (Fig. 2) and 95% confidence 
intervals of the slope estimation are shown. The slope values, as marker of intrinsic radiation sensitivity of tumour cells, 
are well in line with the expected tumour-type specific differences of radio-responsiveness observed in the clinic after 
fractionatedradiation therapy. 
  
 
 


