313 research outputs found

    Oil-Free Turbomachinery Research Enhanced by Thrust Bearing Test Capability

    Get PDF
    NASA Glenn Research Center s Oil-Free Turbomachinery research team is developing aircraft turbine engines that will not require an oil lubrication system. Oil systems are required today to lubricate rolling-element bearings used by the turbine and fan shafts. For the Oil-Free Turbomachinery concept, researchers combined the most advanced foil (air) bearings from industry with NASA-developed high-temperature solid lubricant technology. In 1999, the world s first Oil-Free turbocharger was demonstrated using these technologies. Now we are working with industry to demonstrate Oil-Free turbomachinery technology in a small business jet engine, the EJ-22 produced by Williams International and developed during Glenn s recently concluded General Aviation Propulsion (GAP) program. Eliminating the oil system in this engine will make it simpler, lighter (approximately 15 percent), more reliable, and less costly to purchase and maintain. Propulsion gas turbines will place high demands on foil air bearings, especially the thrust bearings. Up until now, the Oil-Free Turbomachinery research team only had the capability to test radial, journal bearings. This research has resulted in major improvements in the bearings performance, but journal bearings are cylindrical, and can only support radial shaft loads. To counteract axial thrust loads, thrust foil bearings, which are disk shaped, are required. Since relatively little research has been conducted on thrust foil air bearings, their performance lags behind that of journal bearings

    New Test Section Installed in NASA Lewis' 1- by 1-Foot Supersonic Wind Tunnel

    Get PDF
    NASA Lewis Research Center's 1- by 1-Foot Supersonic Wind Tunnel (1x1) is a critical facility that fulfills the needs of important national programs. This tunnel supports supersonic and hypersonic research test projects for NASA, for other Government agencies, and for industry, such as the High Speed Research (HSR) and Space Transportation Technologies (STT) programs. The 1x1, which is located in Lewis' Building 37, Cell 1NW, was built in 1954 and was upgraded to provide Mach 6.0 capability in 1989. Since 1954, only minor improvements had been made to the test section. To improve the 1x1's capabilities and meet the needs of these programs, Lewis recently redesigned and replaced the test section. The new test section has interchangeable window and wall inserts that allow easier and faster test configuration changes, thereby improving the adaptability and productivity of this highly utilized facility. In addition, both the wall and window areas are much larger. The larger walls provide more flexibility in how models are mounted and instrumented. The new window design vastly increases optical access to the research test hardware, which makes the use of advanced flow-visualization systems more effective

    Maunakea Spectroscopic Explorer Advancing from Conceptual Design

    Full text link
    The Maunakea Spectroscopic Explorer (MSE) project has completed its Conceptual Design Phase. This paper is a status report of the MSE project regarding its technical and programmatic progress. The technical status includes its conceptual design and system performance, and highlights findings and recommendations from the System and various subsystems design reviews. The programmatic status includes the project organization and management plan for the Preliminary Design Phase. In addition, this paper provides the latest information related to the permitting process for Maunakea construction.Comment: 15 pages; Proceedings of SPIE Astronomical Telescopes + Instrumentation 2018; Ground-based and Airborne Telescopes VI

    Two-Speed Gearbox Dynamic Simulation Predictions and Test Validation

    Get PDF
    Dynamic simulations and experimental validation tests were performed on a two-stage, two-speed gearbox as part of the drive system research activities of the NASA Fundamental Aeronautics Subsonics Rotary Wing Project. The gearbox was driven by two electromagnetic motors and had two electromagnetic, multi-disk clutches to control output speed. A dynamic model of the system was created which included a direct current electric motor with proportional-integral-derivative (PID) speed control, a two-speed gearbox with dual electromagnetically actuated clutches, and an eddy current dynamometer. A six degree-of-freedom model of the gearbox accounted for the system torsional dynamics and included gear, clutch, shaft, and load inertias as well as shaft flexibilities and a dry clutch stick-slip friction model. Experimental validation tests were performed on the gearbox in the NASA Glenn gear noise test facility. Gearbox output speed and torque as well as drive motor speed and current were compared to those from the analytical predictions. The experiments correlate very well with the predictions, thus validating the dynamic simulation methodologies

    Extraction of Water from Martian Regolith Simulant via Open Reactor Concept

    Get PDF
    To demonstrate proof of concept water extraction from simulated Martian regolith, an open reactor design is presented along with experimental results. The open reactor concept avoids sealing surfaces and complex moving parts. In an abrasive environment like the Martian surface, those reactor elements would be difficult to maintain and present a high probability of failure. A general lunar geotechnical simulant was modified by adding borax decahydrate (Na2B4O710H2O) (BDH) to mimic the ~ 3 percent water content of hydrated salts in near surface soils on Mars. A rotating bucket wheel excavated the regolith from a source bin and deposited the material onto an inclined copper tray, which was fitted with heaters and a simple vibration system. The combination of vibration, tilt angle and heat was used to separate and expose as much regolith surface area as possible to liberate the water contained in the hydrated minerals, thereby increasing the efficiency of the system. The experiment was conducted in a vacuum system capable of maintaining a Martian like atmosphere. Evolved water vapor was directed to a condensing system using the ambient atmosphere as a sweep gas. The water vapor was condensed and measured. Processed simulant was captured in a collection bin and weighed in real time. The efficiency of the system was determined by comparing pre- and post-processing soil mass along with the volume of water captured

    Mucinous adenocarcinoma of the bladder associated with long term suprapubic tube: A case report

    Get PDF
    BACKGROUND: Chronic indwelling catheters may induce histologic changes within the bladder, and these changes are sometimes pre-malignant. There are many documented cases of squamous cell carcinoma associated with indwelling catheters, but only three cases of catheter-associated adenocarcinoma have been reported. In this case report, we present radiographic findings of a case of mucinous adenocarcinoma of the bladder and suprapubic (SP) tract in a quadriplegic patient. CASE PRESENTATION: A 71-year-old male with a history of spinal cord injury presented with hematuria and SP discharge after SP catheterization for 51 years. CT urography was performed and revealed an irregular, infiltrative, and heterogeneous mass arising from the anterior bladder at the level of the suprapubic catheter and extending along the SP tube tract. Cystoscopy and biopsy revealed an adenocarcinoma of the anterior bladder and stoma with extensive associated mucin production and a background of acute and chronic inflammation. Surgical therapy included cystoprostatectomy, abdominal wall resection, ileal conduit creation, and abdominal wall reconstruction. The final diagnosis was a high-grade, T2a/N0/M0 (Stage II) mucinous adenocarcinoma of the bladder. There has been no evidence of tumor recurrence over the previous 5 years. CONCLUSION: Few cases of adenocarcinoma associated with long term indwelling catheter have been reported in the literature, and due to the rarity of this disease process, the prognosis with surgical therapy is not well known. The patient described herein has been free of recurrence for the previous five years, suggesting that surgery is a viable management option for these patients

    Traversing Microphone Track Installed in NASA Lewis' Aero-Acoustic Propulsion Laboratory Dome

    Get PDF
    The Aero-Acoustic Propulsion Laboratory is an acoustically treated, 65-ft-tall dome located at the NASA Lewis Research Center. Inside this laboratory is the Nozzle Acoustic Test Rig (NATR), which is used in support of Advanced Subsonics Technology (AST) and High Speed Research (HSR) to test engine exhaust nozzles for thrust and acoustic performance under simulated takeoff conditions. Acoustic measurements had been gathered by a far-field array of microphones located along the dome wall and 10-ft above the floor. Recently, it became desirable to collect acoustic data for engine certifications (as specified by the Federal Aviation Administration (FAA)) that would simulate the noise of an aircraft taking off as heard from an offset ground location. Since nozzles for the High-Speed Civil Transport have straight sides that cause their noise signature to vary radially, an additional plane of acoustic measurement was required. Desired was an arched array of 24 microphones, equally spaced from the nozzle and each other, in a 25 off-vertical plane. The various research requirements made this a challenging task. The microphones needed to be aimed at the nozzle accurately and held firmly in place during testing, but it was also essential that they be easily and routinely lowered to the floor for calibration and servicing. Once serviced, the microphones would have to be returned to their previous location near the ceiling. In addition, there could be no structure could between the microphones and the nozzle, and any structure near the microphones would have to be designed to minimize noise reflections. After many concepts were considered, a single arched truss structure was selected that would be permanently affixed to the dome ceiling and to one end of the dome floor

    Population-Based Estimates of Physical Activity for Adults with Type 2 Diabetes: A Cautionary Tale of Potential Confounding by Weight Status

    Get PDF
    At a population level, the method used to determine those meeting physical activity guidelines has important implications, as estimating “sufficient” physical activity might be confounded by weight status. The objective of this study was to test the difference between three methods in estimating the prevalence of “sufficient activity” among Canadian adults with type 2 diabetes in a large population sample (N = 1614) while considering the role of weight status as a potential confounder. Our results revealed that estimates of physical activity levels vary by BMI categories, depending on the methods examined. Although physical activity levels were lower in the obese, their energy expenditure estimates were not different from those who were overweight or of a healthy weight. The implications of these findings are that biased estimates of physical activity at a population level may result in inappropriate classification of adults with type 2 diabetes as “sufficiently active” and that the inclusion of body weight in estimating physical activity prevalence should be approached with caution
    corecore