9,692 research outputs found

    Investigation of test methods, material properties, and processes for solar cell encapsulants

    Get PDF
    The development of pottant compounds is emphasized. Formulation of the butyl acrylate syrup/casting pottant was completed. The formulation contains an ultraviolet stabilizer system and may be cured with an initiator that, unlike former selections, presents no shipping of handling hazards to the user. The catalyzed syrup is stable at room temperature and has a pot life of at least eight hours. The formulation of the ethylene/methyl acrylate lamination pottant was also completed. This compound is the alternative pottant to EVA and is similarly produced as an extruded sheet that is wound into rolls. This resin is inherently nonblocking

    Ect2/Pbl Acts via Rho and Polarity Proteins to Direct the Assembly of an Isotropic Actomyosin Cortex upon Mitotic Entry.

    Get PDF
    Entry into mitosis is accompanied by profound changes in cortical actomyosin organization. Here, we delineate a pathway downstream of the RhoGEF Pbl/Ect2 that directs this process in a model epithelium. Our data suggest that the release of Pbl/Ect2 from the nucleus at mitotic entry drives Rho-dependent activation of Myosin-II and, in parallel, induces a switch from Arp2/3 to Diaphanous-mediated cortical actin nucleation that depends on Cdc42, aPKC, and Par6. At the same time, the mitotic relocalization of these apical protein complexes to more lateral cell surfaces enables Cdc42/aPKC/Par6 to take on a mitosis-specific function-aiding the assembly of a relatively isotropic metaphase cortex. Together, these data reveal how the repolarization and remodeling of the actomyosin cortex are coordinated upon entry into mitosis to provide cells with the isotropic and rigid form they need to undergo faithful chromosome segregation and division in a crowded tissue environment

    Encapsulation task of the low-cost silicon solar array project. Investigation of test methods, material properties, and processes for solar cell encapsulants

    Get PDF
    The results of an investigation of solar module encapsulation systems applicable to the Low-Cost Solar Array Project 1986 cost and performance goals are presented. Six basic construction elements were identified and their specific uses in module construction defined. A uniform coating basis was established for each element. The survey results were also useful in revealing price ranges for classes of materials and estimating the cost allocation for each element within the encapsulating cost goal. The six construction elements were considered to be substrates, superstrates, pottants, adhesives, outer covers and back covers

    The Relationship Between Beam Power and Radio Power for Classical Double Radio Sources

    Full text link
    Beam power is a fundamental parameter that describes, in part, the state of a supermassive black hole system. Determining the beam powers of powerful classical double radio sources requires substantial observing time, so it would be useful to determine the relationship between beam power and radio power so that radio power could be used as a proxy for beam power. A sample of 31 powerful classical double radio sources with previously determined beam and radio powers are studied; the sources have redshifts between about 0.056 and 1.8. It is found that the relationship between beam power, Lj, and radio power, P, is well described by Log(Lj) = 0.84 Log(P) + 2.15, where both L_j and P are in units of 10^(44) erg/s. This indicates that beam power is converted to radio power with an efficiency of about 0.7%. The ratio of beam power to radio power is studied as a function of redshift; there is no significant evidence for redshift evolution of this ratio over the redshift range studied. The relationship is consistent with empirical results obtained by Cavagnolo et al. (2010) for radio sources in gas rich environments, which are primarily FRI sources, and with the theoretical predictions of Willott et al. (1999).Comment: 6 pages, 2 figures, 2 tables; accepted for publication in MNRA

    Optimal eigenvalues estimate for the Dirac operator on domains with boundary

    Get PDF
    We give a lower bound for the eigenvalues of the Dirac operator on a compact domain of a Riemannian spin manifold under the \MIT bag boundary condition. The limiting case is characterized by the existence of an imaginary Killing spinor.Comment: 10 page

    In democracies an effective media and opposition are both needed to sanction leaders’ foreign policy missteps

    Get PDF
    Common wisdom in international affairs is that when democratically elected leaders and governments make threats towards other states, these are credible; voters will punish leaders who do not follow through on their words. New research by Philip B. K. Potter and Matthew A. Baum argues however, that not all democracies are equal in the credibility of their threats of military action. By analyzing data on international military disputes over a 35-year period, they find that both an effective and widespread media, and a robust opposition are needed in order for voters to become aware of foreign policy blunders. Without either of these, leaders can avoid following through on their threats with little fear of being punished by voters

    Raman-Scattering Detection of Nearly Degenerate ss-Wave and dd-Wave Pairing Channels in Iron-Based Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 and Rb0.8_{0.8}Fe1.6_{1.6}Se2_2 Superconductors

    Full text link
    We show that electronic Raman scattering affords a window into the essential properties of the pairing potential Vk,kV_{\mathbf{k},\mathbf{k^{\prime}}} of iron-based superconductors. In Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 we observe band dependent energy gaps along with excitonic Bardasis-Schrieffer modes characterizing, respectively, the dominant and subdominant pairing channel. The dx2y2d_{x^2-y^2} symmetry of all excitons allows us to identify the subdominant channel to originate from the interaction between the electron bands. Consequently, the dominant channel driving superconductivity results from the interaction between the electron and hole bands and has the full lattice symmetry. The results in Rb0.8_{0.8}Fe1.6_{1.6}Se2_2 along with earlier ones in Ba(Fe0.939_{0.939}Co0.061_{0.061})2_2As2_2 highlight the influence of the Fermi surface topology on the pairing interactions.Comment: 5 pages, 4 figure

    The twistor spinors of generic 2- and 3-distributions

    Full text link
    Generic distributions on 5- and 6-manifolds give rise to conformal structures that were discovered by P. Nurowski resp. R. Bryant. We describe both as Fefferman-type constructions and show that for orientable distributions one obtains conformal spin structures. The resulting conformal spin geometries are then characterized by their conformal holonomy and equivalently by the existence of a twistor spinor which satisfies a genericity condition. Moreover, we show that given such a twistor spinor we can decompose a conformal Killing field of the structure. We obtain explicit formulas relating conformal Killing fields, almost Einstein structures and twistor spinors.Comment: 26 page

    Applications of ethylene vinyl acetate as an encapsulation material for terrestrial photovoltaic modules

    Get PDF
    Terrestrial photovoltaic modules must undergo substantial reductions in cost in order to become economically attractive as practical devices for large scale production of electricity. Part of the cost reductions must be realized by the encapsulation materials that are used to package, protect, and support the solar cells, electrical interconnects, and other ancillary components. As many of the encapsulation materials are polymeric, cost reductions necessitate the use of low cost polymers. The performance and status of ethylene vinyl acetate, a low cost polymer that is being investigated as an encapsulation material for terrestrial photovoltaic modules, are described

    The Emergence of the Modern Universe: Tracing the Cosmic Web

    Full text link
    This is the report of the Ultraviolet-Optical Working Group (UVOWG) commissioned by NASA to study the scientific rationale for new missions in ultraviolet/optical space astronomy approximately ten years from now, when the Hubble Space Telescope (HST) is de-orbited. The UVOWG focused on a scientific theme, The Emergence of the Modern Universe, the period from redshifts z = 3 to 0, occupying over 80% of cosmic time and beginning after the first galaxies, quasars, and stars emerged into their present form. We considered high-throughput UV spectroscopy (10-50x throughput of HST/COS) and wide-field optical imaging (at least 10 arcmin square). The exciting science to be addressed in the post-HST era includes studies of dark matter and baryons, the origin and evolution of the elements, and the major construction phase of galaxies and quasars. Key unanswered questions include: Where is the rest of the unseen universe? What is the interplay of the dark and luminous universe? How did the IGM collapse to form the galaxies and clusters? When were galaxies, clusters, and stellar populations assembled into their current form? What is the history of star formation and chemical evolution? Are massive black holes a natural part of most galaxies? A large-aperture UV/O telescope in space (ST-2010) will provide a major facility in the 21st century for solving these scientific problems. The UVOWG recommends that the first mission be a 4m aperture, SIRTF-class mission that focuses on UV spectroscopy and wide-field imaging. In the coming decade, NASA should investigate the feasibility of an 8m telescope, by 2010, with deployable optics similar to NGST. No high-throughput UV/Optical mission will be possible without significant NASA investments in technology, including UV detectors, gratings, mirrors, and imagers.Comment: Report of UV/O Working Group to NASA, 72 pages, 13 figures, Full document with postscript figures available at http://casa.colorado.edu/~uvconf/UVOWG.htm
    corecore