1,945 research outputs found

    Ac transport studies in polymers by a resistor network and transfer matrix approaches: application to polyaniline

    Full text link
    A statistical model of resistor network is proposed to describe a polymer structure and to simulate the real and imaginary components of its ac resistivity. It takes into account the polydispersiveness of the material as well as intrachain and interchain charge transport processes. By the application of a transfer matrix technique, it reproduces ac resistivity measurements carried out with polyaniline films in different doping degrees and at different temperatures. Our results indicate that interchain processes govern the resistivity behavior in the low frequency region while, for higher frequencies, intrachain mechanisms are dominant.Comment: LaTeX file, 15 pages, 5 ps figures, to appear in Phys. Rev.

    Managing fatigue in sarcoidosis – a systematic review of the evidence

    Get PDF
    Fatigue is a common manifestation of sarcoidosis, often persisting without evidence of disease activity. First-line therapies for sarcoidosis have limited effect on fatigue. This review aimed to assess the treatment options targeting sarcoidosis-associated fatigue. Medline and Web of Science were searched in November 2015; the bibliographies of these papers, and relevant review papers, were also searched. Studies were included if they reported on the efficacy of interventions (both pharmacological and non-pharmacological) on fatigue scores in sarcoidosis patients. Eight studies were identified that fulfilled the inclusion criteria. These studies evaluated six different interventions (infliximab, adalimumab, ARA 290, methylphenidate, armodafinil and exercise programmes). There is evidence to support a treatment effect of anti-tumour necrosis factor (TNF)-αtherapies (adalimumab and infliximab) and neurostimulants (methylphenidate and armodafinil), but within five of the studies, the risk of bias was high within most domains and the remaining three studies included only small numbers of participants and were short in duration. Trial evidence for treating fatigue as a manifestation of sarcoidosis is limited and requires further investigation. Anti-TNF-α therapies may be beneficial in patients with organ-threatening disease. Neurostimulants have some trial evidence supporting improvements in fatigue but further investigation is needed before they can be recommended

    A Nonzero Gap Two-Dimensional Carbon Allotrope from Porous Graphene

    Full text link
    Graphene is considered one of the most promising materials for future electronic. However, in its pristine form graphene is a gapless material, which imposes limitations to its use in some electronic applications. In order to solve this problem many approaches have been tried, such as, physical and chemical functionalizations. These processes compromise some of the desirable graphene properties. In this work, based on ab initio quantum molecular dynamics, we showed that a two-dimensional carbon allotrope, named biphenylene carbon (BPC) can be obtained from selective dehydrogenation of porous graphene. BPC presents a nonzero bandgap and well-delocalized frontier orbitals. Synthetic routes to BPC are also addressed.Comment: Published on J. Phys. Chem. C, 2012, 116 (23), pp 12810-1281

    Observational Constraints on the Ultra-high Energy Cosmic Neutrino Flux from the Second Flight of the ANITA Experiment

    Get PDF
    The Antarctic Impulsive Transient Antenna (ANITA) completed its second long-duration balloon flight in January 2009, with 31 days aloft (28.5 live days) over Antarctica. ANITA searches for impulsive coherent radio Cherenkov emission from 200 to 1200 MHz, arising from the Askaryan charge excess in ultra-high energy neutrino-induced cascades within Antarctic ice. This flight included significant improvements over the first flight in the payload sensitivity, efficiency, and a flight trajectory over deeper ice. Analysis of in-flight calibration pulses from surface and sub-surface locations verifies the expected sensitivity. In a blind analysis, we find 2 surviving events on a background, mostly anthropogenic, of 0.97+-0.42 events. We set the strongest limit to date for 1-1000 EeV cosmic neutrinos, excluding several current cosmogenic neutrino models.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials

    Full text link
    Nanotube sheets, or “bucky papers,” have been proposed for use in actuating, structural and electrochemical systems, based in part on their potential mechanical properties. Here, we present results of detailed simulations of networks of nanotubes/ropes, with special emphasis on the effect of joint morphology. We perform detailed simulations of three-dimensional joint deformation, and use the results to inform simulations of two-dimensional (2D) networks with intertube connections represented by torsion springs. Upper bounds are established on moduli of nanotube sheets, using the 2D Euler beam-network simulations. Comparisons of experimental and simulated response for HiPco-nanotube and laser-ablated nanotube sheets, indicate that ∼2–30-fold increases in moduli may be achievable in these materials. Increasing the numbers of interrope connections appears to be the best target for improving nanotube sheet stiffnesses in materials containing straight segments. © 2004 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70283/2/JAPIAU-95-8-4335-1.pd

    Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives

    Get PDF
    Organic polymers, such as poly(vinyl alcohol), poly(vinyl pyrrolidone), and poly(styrene), were intercalated into single-walled carbon nanotube sheets by soaking the sheets in polymer solutions. Even for short soak times, significant polymer intercalation into existing free volume was observed. Tensile tests on intercalated sheets showed that the Young\u27s modulus, strength, and toughness increased by factors of 3, 9, and 28, respectively, indicating that the intercalated polymer enhances load transmission between nanotubes
    corecore