153 research outputs found

    Eligibility of External Credit Assessment Institutions

    Get PDF
    The Basel Committee on Banking Supervision in 1999 issued a draft New Basel Capital Accord (Basel 2). Its principles are to be incorporated into the European legislation and into the Czech banking regulations. The Standardised Approach to calculating the capital requirement for credit risk is newly based on external credit assessments (ratings). Banking regulators and supervisors have to be prepared for the process of determining eligible credit assessment institutions (ECAIs) and will have to elaborate a formal recognition procedure. This paper investigates the approaches a supervisor may apply to ECAI recognition and elaborates on the criteria of recognition. First, the paper reviews the available rating agencies on the market (including their rating penetration on the Czech market), their best practices and the experience with the use of their ratings for regulatory purposes. Second, drawing on international experience and the proposed Basel 2 rules, we outline the fundamental supervisory approaches to recognition, including the legal aspects thereof, and analyse their pros and cons and the frontiers of supervisory decision making. Third, we outline the rules for recognition, including requirements or expectations (e.g. soft limits), documentation and typical interview questions with the potential candidates. We find the CNB's approach to be in compliance with CEBS Consultative Paper CP07 (issued for public consultation in June 2005).Basel capital accord, Basel II, Credit rating, default, eligibility criteria, eligibility evaluation, external credit assessment institution (ECAI), export credit agency (ECA), mapping rating grades, market acceptance of ECAIs, rating agency, recognition process

    Impact of Oxidative Stress on Inflammation in Rheumatoid and Adjuvant Arthritis: Damage to Lipids, Proteins, and Enzymatic Antioxidant Defense in Plasma and Different Tissues

    Get PDF
    Animal models of rheumatoid arthritis (RA) are widely used for testing potential new therapies for RA. The most commonly used models of human RA are adjuvant-induced arthritis (AIA) and collagen-induced arthritis in rats and mice. In this chapter, we will focus on inflammatory and oxidative stress (OS) processes during the development of AIA. OS is a result of increased production of reactive oxygen species (ROS) or a reduction in the body’s endogenous antioxidant defense system. ROS and reactive nitrogen species (RNS) can contribute to the pathogenesis of RA by the induction of membrane oxidation, irreversible damage to proteins and DNA, cartilage damage, and induction of bone resorption. ROS/RNS can also modulate a variety of signaling events that control gene expression and affect cellular processes that participate in chronic inflammation. Our research team has been studying the course of OS during the development of rat AIA for more than a decade. We have analyzed the course of OS using markers of lipid peroxidation (malondialdehyde, 4-hydroxy-2-nonenal, and F-2 isoprostanes), protein carbonyls, antioxidant enzymes (heme oxygenase and gamma-glutamyl transferase), and levels of endogenous antioxidants (coenzyme Q10 and Q9, gamma-tocopherol) in plasma and different tissues (joint, liver, lung, skeletal muscle, and spleen)

    The protective effect of chondroitin sulfate on induced arthritis in rats.

    Get PDF
    The protective effect of chondroitin sulfate on induced arthritis in rats

    Inflammation in the Pathogenesis of Rheumatoid Arthritis and in Experimental Arthritis: Evaluation of Combinations of Carnosic Acid and Extract of <em>Rhodiola rosea</em> L. with Methotrexate

    Get PDF
    The host immune response generates the pro-inflammatory immune response as a protective measure against invading pathogens, allergens, and/or trauma. However, dysregulated and chronic inflammation may result in secondary damage to tissues and immune pathology to the host. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease which primarily involves synovial inflammation, joint pain, immobility, and stiffness. Increased infiltration of inflammatory immune cells and fibroblast-like synoviocytes into joints, form pannus and small blood vessels that lead to synovium and cartilage destruction. In this chapter we will focus on the role of inflammatory cytokines (IL-1β, IL-6 and IL-17), chemokine monocyte chemotactic protein-1 and matrix metalloproteinase-9 in the pathogenesis of experimental arthritis in animals and in human RA. Further, we will be discussing about methotrexate’s (cornerstone of anti-rheumatic therapy) immune suppressing activity, anti-inflammatory properties of carnosic acid and extract of Rhodiola rosea L., and their innovative combination treatments with methotrexate in rat adjuvant arthritis

    Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias

    Get PDF
    Human ryanodine receptor 2 (hRyR2) mediates calcium release from the sarcoplasmic reticulum, enabling cardiomyocyte contraction. The N-terminal region of hRyR2 (amino acids 1–606) is the target of >30 arrhythmogenic mutations and contains a binding site for phosphoprotein phosphatase 1. Here, the solution and crystal structures determined under near-physiological conditions, as well as a homology model of the hRyR2 N-terminal region, are presented. The N-terminus is held together by a unique network of interactions among its three domains, A, B and C, in which the central helix (amino acids 410–437) plays a prominent stabilizing role. Importantly, the anion-binding site reported for the mouse RyR2 N-terminal region is notably absent from the human RyR2. The structure concurs with the differential stability of arrhythmogenic mutations in the central helix (R420W, I419F and I419F/R420W) which are owing to disparities in the propensity of mutated residues to form energetically favourable or unfavourable contacts. In solution, the N-terminus adopts a globular shape with a prominent tail that is likely to involve residues 545–606, which are unresolved in the crystal structure. Docking the N-terminal domains into cryo-electron microscopy maps of the closed and open RyR1 conformations reveals C atom movements of up to 8 A ° upon channel gating, and predicts the location of the leucine– isoleucine zipper segment and the interaction site for spinophilin and phosphoprotein phosphatase 1 on the RyR surface

    A regulatory component of the human ryanodine receptor 2 N-terminus

    Get PDF
    Human cardiac ryanodine receptor (hRyR2) is a channel mediating Ca2+ release from the sarcoplasmic reticulum during excitation-contraction coupling. The N-terminal (1-655) and central (2100-2500) regions of hRyR2 are thought to be involved in regulating channel gating. Mutations linked to several heart diseases are clustered within these two, as well as in the channel pore-containing C-terminal regions. High resolution structures of key regions involved in the regulation of RyR2 activity could further the understanding of the gating mechanism of hRyR2 and of its malfunction in disease

    High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species

    Get PDF
    Sympatric cryptic species, characterized by low morphological differentiation, pose a challenge to understanding the role of interspecific competition in structuring ecological communities. We used traditional (morphological) and novel molecular methods of diet analysis to study the diet of two cryptic bat species that are sympatric in southern England (Plecotus austriacus and P. auritus) (Fig. 1). Using Roche FLX 454 (Roche, Basel, CH) high-throughput sequencing (HTS) and uniquely tagged generic arthropod primers, we identified 142 prey Molecular Operational Taxonomic Units (MOTUs) in the diet of the cryptic bats, 60% of which were assigned to a likely species or genus. The findings from the molecular study supported the results of microscopic analyses in showing that the diets of both species were dominated by lepidopterans. However, HTS provided a sufficiently high resolution of prey identification to determine fine-scale differences in resource use. Although both bat species appeared to have a generalist diet, eared-moths from the family Noctuidae were the main prey consumed. Interspecific niche overlap was greater than expected by chance (Ojk= 0.72, P &lt; 0.001) due to overlap in the consumption of the more common prey species. Yet, habitat associations of nongeneralist prey species found in the diets corresponded to those of their respective bat predator (grasslands for P. austriacus, and woodland for P. auritus). Overlap in common dietary resource use combined with differential specialist prey habitat associations suggests that habitat partitioning is the primary mechanism of coexistence. The performance of HTS is discussed in relation to previous methods of molecular and morphological diet analysis. By enabling species-level identification of dietary components, the application of DNA sequencing to diet analysis allows a more comprehensive comparison of the diet of sympatric cryptic species, and therefore can be an important tool for determining fine-scale mechanisms of coexistence
    corecore