27,644 research outputs found

    The cosmological constant and the relaxed universe

    Full text link
    We study the role of the cosmological constant (CC) as a component of dark energy (DE). It is argued that the cosmological term is in general unavoidable and it should not be ignored even when dynamical DE sources are considered. From the theoretical point of view quantum zero-point energy and phase transitions suggest a CC of large magnitude in contrast to its tiny observed value. Simply relieving this disaccord with a counterterm requires extreme fine-tuning which is referred to as the old CC problem. To avoid it, we discuss some recent approaches for neutralising a large CC dynamically without adding a fine-tuned counterterm. This can be realised by an effective DE component which relaxes the cosmic expansion by counteracting the effect of the large CC. Alternatively, a CC filter is constructed by modifying gravity to make it insensitive to vacuum energy.Comment: 6 pages, no figures, based on a talk presented at PASCOS 201

    Low-Energy Structures in Strong Field Ionization Revealed by Quantum Orbits

    Full text link
    Experiments on atoms in intense laser pulses and the corresponding exact ab initio solutions of the time-dependent Schr\"odinger equation (TDSE) yield photoelectron spectra with low-energy features that are not reproduced by the otherwise successful work horse of strong field laser physics: the "strong field approximation" (SFA). In the semi-classical limit, the SFA possesses an appealing interpretation in terms of interfering quantum trajectories. It is shown that a conceptually simple extension towards the inclusion of Coulomb effects yields very good agreement with exact TDSE results. Moreover, the Coulomb quantum orbits allow for a physically intuitive interpretation and detailed analysis of all low-energy features in the semi-classical regime, in particular the recently discovered "low-energy structure" [C.I. Blaga et al., Nature Physics 5, 335 (2009) and W. Quan et al., Phys. Rev. Lett. 103, 093001 (2009)].Comment: 4 pages, 3 figures, REVTe

    Soft-Collinear Messengers: A New Mode in Soft-Collinear Effective Theory

    Full text link
    It is argued that soft-collinear effective theory for processes involving both soft and collinear partons, such as exclusive B-meson decays, should include a new mode in addition to soft and collinear fields. These "soft-collinear messengers" can interact with both soft and collinear particles without taking them far off-shell. They thus can communicate between the soft and collinear sectors of the theory. The relevance of the new mode is demonstrated with an explicit example, and the formalism incorporating the corresponding quark and gluon fields into the effective Lagrangian is developed.Comment: 22 pages, 5 figures. Extended Section 6, clarifying the relevance of different types of soft-collinear interaction

    Non-equilibrium spin accumulation in ferromagnetic single-electron transistors

    Full text link
    We study transport in ferromagnetic single-electron transistors. The non- equilibrium spin accumulation on the island caused by a finite current through the system is described by a generalized theory of the Coulomb blockade. It enhances the tunnel magnetoresistance and has a drastic effect on the time- dependent transport properties. A transient decay of the spin accumulation may reverse the electric current on time scales of the order of the spin-flip relaxation time. This can be used as an experimental signature of the non- equilibrium spin accumulation.Comment: 9 postscript figures, to appear in The European Physical Journal

    A proof of factorization for B -> D pi

    Get PDF
    We prove that the matrix elements of four fermion operators mediating the decay B^0 -> D^+ \pi^- and B^- -> D^0 \pi^- factor into the product of a form factor describing the B -> D transition and a convolution of a short distance coefficient with the nonperturbative pion light-cone wave function. This is shown to all orders in alpha_s, up to corrections suppressed by factors of 1/mb, 1/mc, and 1/E_pi. It is not necessary to assume that the pion state is dominated by the q-qbar Fock state.Comment: 4 pages, 3 figs, PRL versio

    The Euphrosyne family's contribution to the low albedo near-Earth asteroids

    Get PDF
    The Euphrosyne asteroid family is uniquely situated at high inclination in the outer Main Belt, bisected by the nu_6 secular resonance. This large, low albedo family may thus be an important contributor to specific subpopulations of the near-Earth objects. We present simulations of the orbital evolution of Euphrosyne family members from the time of breakup to the present day, focusing on those members that move into near-Earth orbits. We find that family members typically evolve into a specific region of orbital element-space, with semimajor axes near ~3 AU, high inclinations, very large eccentricities, and Tisserand parameters similar to Jupiter family comets. Filtering all known NEOs with our derived orbital element limits, we find that the population of candidate objects is significantly lower in albedo than the overall NEO population, although many of our candidates are also darker than the Euphrosyne family, and may have properties more similar to comet nuclei. Followup characterization of these candidates will enable us to compare them to known family properties, and confirm which ones originated with the breakup of (31) Euphrosyne.Comment: Accepted for publication in Ap

    Interface resistance of disordered magnetic multilayers

    Full text link
    We study the effect of interface disorder on the spin-dependent interface resistances of Co/Cu, Fe/Cr and Au/Ag multilayers using a newly developed method for calculating transmission matrices from first-principles. The efficient implementation using tight-binding linear-muffin-tin orbitals allows us to model interface disorder using large lateral supercells whereby specular and diffuse scattering are treated on an equal footing. Without introducing any free parameters, quantitative agreement with experiment is obtained. We predict that disorder {\it reduces} the majority-spin interface resistance of Fe/Cr(100) multilayers by a factor 3.Comment: 5 pages, 2 figures, submitted to PR

    Two-channel point-contact tunneling theory of superconductors

    Get PDF
    We introduce a two-channel tunneling model to generalize the widely used BTK theory of point-contact conductance between a normal metal contact and superconductor. Tunneling of electrons can occur via localized surface states or directly, resulting in a Fano resonance in the differential conductance G=dI/dVG=dI/dV. We present an analysis of GG within the two-channel model when applied to soft point-contacts between normal metallic silver particles and prototypical heavy-fermion superconductors CeCoIn5_5 and CeRhIn5_5 at high pressures. In the normal state the Fano line shape of the measured GG is well described by a model with two tunneling channels and a large temperature-independent background conductance. In the superconducting state a strongly suppressed Andreev reflection signal is explained by the presence of the background conductance. We report Andreev signal in CeCoIn5_5 consistent with standard dx2−y2d_{x^2-y^2}-wave pairing, assuming an equal mixture of tunneling into [100] and [110] crystallographic interfaces. Whereas in CeRhIn5_5 at 1.8 and 2.0 GPa the signal is described by a dx2−y2d_{x^2-y^2}-wave gap with reduced nodal region, i.e., increased slope of the gap opening on the Fermi surface. A possibility is that the shape of the high-pressure Andreev signal is affected by the proximity of a line of quantum critical points that extends from 1.75 to 2.3 GPa, which is not accounted for in our description of the heavy-fermion superconductor.Comment: 13 pages, 13 figure
    • …
    corecore