293 research outputs found

    The symmetry of the superconducting order parameter in PuCoGa5_5

    Full text link
    The symmetry of the superconducting order parameter in single-crystalline PuCoGa5_5 (Tc=18.5T_{\rm c} = 18.5 K) is investigated via zero- and transverse- field muon spin relaxation (μ\muSR) measurements, probing the possible existence of orbital and/or spin moments (time reversal-symmetry violation TRV) associated with the superconducting phase and the in-plane magnetic-field penetration depth λ(T)\lambda(T) in the mixed state, respectively. We find no evidence for TRV, and show that the superfluid density, or alternatively, Δλ(T)=λ(T)λ(0)\Delta\lambda(T) = \lambda(T) - \lambda(0), are T\propto T for T/Tc0.5T/T_{\rm c} \leq 0.5. Taken together these measurements are consistent with an even-parity (pseudo-spin singlet), d-wave pairing state.Comment: 4 pages, 5 figure

    Mixed-parity superconductivity in centrosymmetric crystals

    Full text link
    A weak-coupling formalism for superconducting states possessing both singlet (even parity) and triplet (odd parity) components of the order parameter in centrosymmetric crystals is developed. It is shown that the quasiparticle energy spectrum may be non-degenerate even if the triplet component is unitary. The superconducting gap of a mixed-parity state may have line nodes in the strong spin-orbit coupling limit. The pseudospin carried by the superconducting electrons is calculated, from which follows a prediction of a kink anomaly in the temperature dependence of muon spin relaxation rate. The anomaly occurs at the phase boundary between the bare triplet and mixed-parity states. The stability of mixed-parity states is discussed within Ginzburg-Landau theory. The results may have immediate application to the superconducting series Pr(Os,Ru)4Sb12.Comment: 5 pages, 2 figures. Final version accepted to PR

    Probing The Electronic Structure Of Pure And Doped Cem In5 (m=co,rh,ir) Crystals With Nuclear Quadrupolar Resonance

    Get PDF
    We report calculations of the electric-field gradients (EFGs) in pure and doped CeM In5 (M=Co, Rh, and Ir) compounds and compare with experiment. The degree to which the Ce4f electron is localized is treated within various models: the local-density approximation, generalized gradient approximation (GGA), GGA+U, and 4f -core approaches. We find that there is a correlation between the observed EFG and whether the 4f electron participates in the band formation or not. We also find that the EFG evolves linearly with Sn doping in CeRhIn5, suggesting the electronic structure is modified by doping. In contrast, the observed EFG in CeCoIn5 doped with Cd changes little with doping. These results indicate that nuclear quadrupolar resonance is a sensitive probe of electronic structure. © 2008 The American Physical Society.7724Slichter, C.P., (1990) Principles of Magnetic Resonance, , 3rd ed. (Springer-Verlag, New YorkCurro, N.J., Caldwell, T., Bauer, E.D., Morales, L.A., Graf, M.J., Bang, Y., Balatsky, A.V., Sarrao, J.L., (2005) Nature (London), 434, p. 622. , NATUAS 0028-0836 10.1038/nature03428Farnan, I., Cho, H., Weber, W.J., (2007) Nature (London), 445, p. 190. , NATUAS 0028-0836 10.1038/nature05425Zheng, G.-Q., Tanabe, K., Mito, T., Kawasaki, S., Kitaoka, Y., Aoki, D., Haga, Y., Onuki, Y., (2001) Phys. Rev. Lett., 86, p. 4664. , PRLTAO 0031-9007 10.1103/PhysRevLett.86.4664Movshovich, R., Jaime, M., Thompson, J.D., Petrovic, C., Fisk, Z., Pagliuso, P.G., Sarrao, J.L., (2001) Phys. Rev. Lett., 86, p. 5152. , PRLTAO 0031-9007 10.1103/PhysRevLett.86.5152Pagliuso, P.G., Petrovic, C., Movshovich, R., Hall, D., Hundley, M.F., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2001) Phys. Rev. B, 64, p. 100503. , PRBMDO 0163-1829 10.1103/PhysRevB.64.100503Zapf, V.S., Freeman, E.J., Bauer, E.D., Petricka, J., Sirvent, C., Frederick, N.A., Dickey, R.P., Maple, M.B., (2001) Phys. Rev. B, 65, p. 014506. , PRBMDO 0163-1829 10.1103/PhysRevB.65.014506Ormeno, R.J., Sibley, A., Gough, C.E., Sebastian, S., Fisher, I.R., (2002) Phys. Rev. Lett., 88, p. 047005. , PRLTAO 0031-9007 10.1103/PhysRevLett.88.047005Park, T., Ronning, F., Yuan, H.Q., Salamon, M.B., Movshovich, R., Sarrao, J.L., Thompson, J.D., (2006) Nature (London), 440, p. 65. , NATUAS 0028-0836 10.1038/nature04571Petrovic, C., Movshovich, R., Jaime, M., Pagliuso, P.G., Hundley, M.F., Sarrao, J.L., Fisk, Z., Thompson, J.D., (2001) Europhys. Lett., 53, p. 354. , EULEEJ 0295-5075 10.1209/epl/i2001-00161-8Bao, W., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., Lynn, J.W., Erwin, R.W., (2000) Phys. Rev. B, 62, p. 14621. , PRBMDO 0163-1829 10.1103/PhysRevB.62.R14621Curro, N.J., Hammel, P.C., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2000) Phys. Rev. B, 62, p. 6100. , PRBMDO 0163-1829 10.1103/PhysRevB.62.R6100Hegger, H., Petrovic, C., Moshopoulou, E.G., Hundley, M.F., Sarrao, J.L., Fisk, Z., Thompson, J.D., (2000) Phys. Rev. Lett., 84, p. 4986. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.4986Shishido, H., Settai, R., Araki, S., Ueda, T., Inada, Y., Kobayashi, T.C., Muramatsu, T., Onuki, Y., (2002) Phys. Rev. B, 66, p. 214510. , PRBMDO 0163-1829 10.1103/PhysRevB.66.214510Shishido, H., Settai, R., Harima, H., Onuki, Y., (2005) J. Phys. Soc. Jpn., 74, p. 1103. , JUPSAU 0031-9015 10.1143/JPSJ.74.1103Pham, L.D., Park, T., Maquilon, S., Thompson, J.D., Fisk, Z., (2006) Phys. Rev. Lett., 97, p. 056404. , PRLTAO 0031-9007 10.1103/PhysRevLett.97.056404Daniel, M., Bauer, E.D., Han, S.-W., Booth, C.H., Cornelius, A.L., Pagliuso, P.G., Sarrao, J.L., (2005) Phys. Rev. Lett., 95, p. 016406. , PRLTAO 0031-9007 10.1103/PhysRevLett.95.016406Paglione, J., Sayles, T.A., Ho, P.-C., Jeffries, J.R., Maple, M.B., (2007) Nat. Phys., 3, p. 703. , ZZZZZZ 1745-2473Urbano, R.R., Young, B.-L., Curro, N.J., Thompson, J.D., Pham, L.D., Fisk, Z., (2007) Phys. Rev. Lett., 99, p. 146402. , PRLTAO 0031-9007 10.1103/PhysRevLett.99.146402Czyzyk, M.T., Sawatzky, G.A., (1994) Phys. Rev. B, 49, p. 14211. , PRBMDO 0163-1829 10.1103/PhysRevB.49.14211Anisimov, V.I., Solovyev, I.V., Korotin, M.A., Czyzyk, M.T., Sawatzky, G.A., (1993) Phys. Rev. B, 48, p. 16929. , PRBMDO 0163-1829 10.1103/PhysRevB.48.16929Bianchi, A., Movshovich, R., Vekhter, I., Pagliuso, P.G., Sarrao, J.L., (2003) Phys. Rev. Lett., 91, p. 257001. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.257001Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J., (2001) WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, , Karlheinz Schwarz, Techn. Universität Wien, AustriaKuneš, J., Novák, P., Divis, M., Oppeneer, P.M., (2001) Phys. Rev. B, 63, p. 205111. , PRBMDO 0163-1829 10.1103/PhysRevB.63.205111Blaha, P., Schwarz, K., Herzig, P., (1985) Phys. Rev. Lett., 54, p. 1192. , PRLTAO 0031-9007 10.1103/PhysRevLett.54.1192Herzig, P., (1985) Theor. Chim. Acta, 67, p. 323. , TCHAAM 0040-5744 10.1007/BF00529304Mohn, P., (2000) Hyperfine Interact., 128, p. 67. , HYINDN 0304-3843 10.1023/A:1012619212656Petrovic, C., Pagliuso, P.G., Hundley, M.F., Movshovich, R., Sarrao, J.L., Thompson, J.D., Fisk, Z., Monthoux, P., (2001) J. Phys.: Condens. Matter, 13, p. 337. , JCOMEL 0953-8984 10.1088/0953-8984/13/17/103Perdew, J.P., Wang, Y., (1992) Phys. Rev. B, 45, p. 13244. , PRBMDO 0163-1829 10.1103/PhysRevB.45.13244Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865. , PRLTAO 0031-9007 10.1103/PhysRevLett.77.3865Kohori, Y., Inoue, Y., Kohara, T., Tomka, G., Riedi, P.C., (1999) Physica B, 259-261, p. 103. , PHYBE3 0921-4526Rusz, J., Biasini, M., (2005) Phys. Rev. B, 71, p. 233103. , PRBMDO 0163-1829 10.1103/PhysRevB.71.233103Kohori, Y., Yamato, Y., Iwamoto, Y., Kohara, T., Bauer, E.D., Maple, M.B., Sarrao, J.L., (2001) Phys. Rev. B, 64, p. 134526. , PRBMDO 0163-1829 10.1103/PhysRevB.64.134526Curro, N.J., Simovic, B., Hammel, P.C., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Martins, G.B., (2001) Phys. Rev. B, 64, p. 180514. , PRBMDO 0163-1829 10.1103/PhysRevB.64.180514Lynch, D.W., Weaver, J.H., (1987) Handbook on the Physics and Chemistry of Rare Earths, 10, p. 231. , edited by K. A. Gschneidner, L. Eyring, and S. Hüfner (North-Holland, AmsterdamShishido, H., Settai, R., Aoki, D., Ikeda, S., Nakawaki, H., Nakamura, N., Iizuka, T., Onuki, Y., (2002) J. Phys. Soc. Jpn., 71, p. 162. , JUPSAU 0031-9015 10.1143/JPSJ.71.162Elgazzar, S., Opahle, I., Hayn, R., Oppeneer, P.M., (2004) Phys. Rev. B, 69, p. 214510. , PRBMDO 0163-1829 10.1103/PhysRevB.69.214510Oppeneer, P.M., Elgazzar, S., Shick, A.B., Opahle, I., Rusz, J., Hayn, R., (2007) J. Magn. Magn. Mater., 310, p. 1684. , JMMMDC 0304-8853 10.1016/j.jmmm.2006.10.763Bauer, E.D., Capan, C., Ronning, F., Movshovich, R., Thompson, J.D., Sarrao, J.L., (2005) Phys. Rev. Lett., 94, p. 047001. , PRLTAO 0031-9007 10.1103/PhysRevLett.94.047001Nakatsuji, S., Pines, D., Fisk, Z., (2004) Phys. Rev. Lett., 92, p. 016401. , PRLTAO 0031-9007 10.1103/PhysRevLett.92.016401Curro, N.J., Young, B.-L., Schmalian, J., Pines, D., (2004) Phys. Rev. B, 70, p. 235117. , PRBMDO 0163-1829 10.1103/PhysRevB.70.235117Yashima, M., Kawasaki, S., Kawasaki, Y., Zheng, G.-Q., Kitaoka, Y., Shishido, H., Settai, R., Onuki, Y., (2004) J. Phys. Soc. Jpn., 73, p. 2073. , JUPSAU 0031-9015 10.1143/JPSJ.73.2073Kawasaki, S., Zheng, G.-Q., Kan, H., Kitaoka, Y., Shishido, H., Onuki, Y., (2005) Phys. Rev. Lett., 94, p. 037007. , PRLTAO 0031-9007 10.1103/PhysRevLett.94.037007Haase, J., Sushkov, O.P., Horsch, P., Williams, G.V.M., (2004) Phys. Rev. B, 69, p. 094504. , PRBMDO 0163-1829 10.1103/PhysRevB.69.094504Curro, N.J., Nicklas, M., Stockert, O., Park, T., Habicht, K., Kiefer, K., Pham, L.D., Thompson, J.D., Steglich, F., (2007) Phys. Rev. B, 76, p. 052401. , PRBMDO 0163-1829 10.1103/PhysRevB.76.052401Settai, R., Shishido, H., Ikeda, S., Murakawa, Y., Nakashima, M., Aoki, D., Haga, Y., Onuki, Y., (2001) J. Phys.: Condens. Matter, 13, p. 627. , JCOMEL 0953-8984 10.1088/0953-8984/13/27/103Normile, P.S., Heathman, S., Idiri, M., Boulet, P., Rebizant, J., Wastin, F., Lander, G.H., Lindbaum, A., (2005) Phys. Rev. B, 72, p. 184508. , PRBMDO 0163-1829 10.1103/PhysRevB.72.184508Oppeneer, P.M., (2001) Handbook of Magnetic Materials, 13, pp. 229-422. , edited by K. H. J. Buschow (Elsevier, AmsterdamOppeneer, P.M., Antonov, V.N., Yaresko, A.N., Perlov, A.Y., Eschrig, H., (1997) Phys. Rev. Lett., 78, p. 4079. , PRLTAO 0031-9007 10.1103/PhysRevLett.78.4079Shim, J.H., Haule, K., Kotliar, G., (2007) Science, 318, p. 1615. , SCIEAS 0036-8075 10.1126/science.1149064Alver, U., Goodrich, R.G., Harrison, N., Hall, D.W., Palm, E.C., Murphy, T.P., Tozer, S.W., Fisk, Z., (2001) Phys. Rev. B, 64, p. 180402. , PRBMDO 0163-1829 10.1103/PhysRevB.64.180402Christianson, A.D., Lawrence, J.M., Pagliuso, P.G., Moreno, N.O., Sarrao, J.L., Thompson, J.D., Riseborough, P.S., Lacerda, A.H., (2002) Phys. Rev. B, 66, p. 193102. , PRBMDO 0163-1829 10.1103/PhysRevB.66.193102Haga, Y., Inada, Y., Harima, H., Oikawa, K., Murakawa, M., Nakawaki, H., Tokiwa, Y., Onuki, Y., (2001) Phys. Rev. B, 63, p. 060503. , PRBMDO 0163-1829 10.1103/PhysRevB.63.060503Fujimori, S.-I., Fujimori, A., Shimada, K., Narimura, T., Kobayashi, K., Namatame, H., Taniguchi, M., Opnuki, Y., (2006) Phys. Rev. B, 73, p. 224517. , PRBMDO 0163-1829 10.1103/PhysRevB.73.224517Paglione, J., Tanatar, M.A., Hawthorn, D.G., Ronning, F., Hill, R.W., Sutherland, M., Taillefer, L., Petrovic, C., (2006) Phys. Rev. Lett., 97, p. 106606. , PRLTAO 0031-9007 10.1103/PhysRevLett.97.10660

    Probing the superconducting gap symmetry of PrRu4_{4}Sb12_{12}: A comparison with PrOs4_{4}Sb12_{12}

    Full text link
    We report measurements of the magnetic penetration depth λ\lambda in single crystals of PrRu4_{4}Sb12_{12} down to 0.1 K. Both λ\lambda and superfluid density ρs\rho_{s} exhibit an exponential behavior for TT << 0.5TcT_{c}, with parameters Δ\Delta(0)/\textit{k}B_{B}\textit{T}c_{c} = 1.9 and λ(0)\lambda(0) = 2900 \AA. The value of Δ\Delta(0) is consistent with the specific-heat jump value of ΔC/γTc\Delta C/\gamma T_{c} = 1.87 measured elsewhere, while the value of λ(0)\lambda(0) is consistent with the measured value of the electronic heat-capacity coefficient γ\gamma. Our data are consistent with PrRu4_{4}Sb12_{12} being a moderate-coupling, fully-gapped superconductor. We suggest experiments to study how the nature of the superconducting state evolves with increasing Ru substitution for Os

    Color Transparency Effects in Electron Deuteron Interactions at Intermediate Q^2

    Full text link
    High momentum transfer electrodisintegration of polarized and unpolarized deuterium targets, d(e,ep)nd(e,e'p)n is studied. We show that the importance of final state interactions-FSI, occuring when a knocked out nucleon interacts with the other nucleon, depends strongly on the momentum of the spectator nucleon. In particular, these FSI occur when the essential contributions to the scattering amplitude arise from internucleon distances 1.5 fm\sim 1.5~fm. But the absorption of the high momentum γ\gamma^* may produce a point like configuration, which evolves with time. In this case, the final state interactions probe the point like configuration at the early stage of its evolution. The result is that significant color transparency effects, which can either enhance or suppress computed cross sections, are predicted to occur for 4GeV2Q2 10 (GeV/c)2\sim 4 GeV^2 \ge Q^2\leq~10~(GeV/c)^2.Comment: 37 pages LaTex, 12 uuencoded PostScript Figures as separate file, to be published in Z.Phys.

    The Magnetic Phase Diagram and the Pressure and Field Dependence of the Fermi Surface in UGe2_2

    Full text link
    The ac susceptibility and de Haas-van Alphen (dHvA) effect in UGe2_2 are measured at pressures {\it P} up to 17.7 kbar for the magnetic field {\it B} parallel to the {\it a} axis, which is the easy axis of magnetization. Two anomalies are observed at {\it Bx_x}({\it P}) and {\it B}m_m({\it P}) ({\it Bx_x} >> {\it B}m_m at any {\it P}), and the {\it P}-{\it B} phase diagram is presented. The Fermi surface and quasiparticle mass are found to vary smoothly with pressure up to 17.7 kbar unless the phase boundary {\it Bx_x}({\it P}) is crossed. The observed dHvA frequencies may be grouped into three according to their pressure dependences, which are largely positive, nearly constant or negative. It is suggested that the quasiparticle mass moderately increases as the boundary {\it Bx_x}({\it P}) is approached. DHvA effect measurements are also performed across the boundary at 16.8 kbar.Comment: to be published in Phys. Rev.

    Quasi particle interference of heavy fermions in resonant x ray scattering

    Get PDF
    Resonant x ray scattering RXS has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity induced Friedel oscillations, akin to quasi particle interference signals observed with a scanning tunneling microscope STM , can lead to scattering peaks in RXS experiments. The possibility that quasi particle properties can be probed in RXSmeasurements opens up a new avenue to study the bulk band structure ofmaterials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 M Co, Rh . Temperature and doping dependent RXSmeasurements at the Ce M4 edge show abroad scattering enhancement that correlateswith the appearance of heavy f electron bands in these compounds. The scattering enhancement is consistentwith themeasured quasi particle interference signal in the STMmeasurements, indicating that the quasi particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS techniqu

    Quadrupolar effect and rattling motion in heavy fermion superconductor PrOs_4Sb_{12}

    Full text link
    The elastic properties of a filled skutterudite PrOs_4Sb_{12} with a heavy Fermion superconductivity at T_C=1.85 K have been investigated. The elastic softening of (C_{11}-C_{12})/2 and C_{44} with lowering temperature down to T_C indicates that the quadrupolar fluctuation due to the CEF state plays a role for the Cooper paring in superconducting phase of PrOs_4Sb_{12}. A Debye-type dispersion in the elastic constants around 30 K revealed a thermally activated Gamma_{23} rattling due to the off-center Pr-atom motion obeying tau=tau_{0}exp(E/k_{B}T) with an attempt time tau_0=8.8*10^{-11} sec and an activation energy E=168 K. It is remarkable that the charge fluctuation of the off-center motion with Gamma_{23} symmetry may mix with the quadrupolar fluctuation and enhance the elastic softening of (C_{11}-C_{12})/2 just above T_C.Comment: 5 pages, 4 figures, to be published to Phys. Rev.
    corecore