515 research outputs found
Salicylaldehyde hydrazones: buttressing of outer sphere hydrogen-bonding and copper-extraction properties
Salicylaldehyde hydrazones are weaker copper extractants than their oxime derivatives, which are used in hydrometallurgical processes to recover ~20 % of the world’s copper. Their strength, based on the extraction equilibrium constant Ke, can be increased by nearly three orders of magnitude by incorporating electron-withdrawing or hydrogen-bond acceptor groups (X) ortho to the phenolic OH group of the salicylaldehyde unit. Density functional theory calculations suggest that the effects of the 3-X substituents arise from a combination of their influence on the acidity of the phenol in the pH-dependent equilibrium, Cu2+ + 2Lorg ⇌ [Cu(L–H)2]org + 2H+, and on their ability to ‘buttress’ interligand hydrogen bonding by interacting with the hydrazone N–H donor group. X-ray crystal structure determination and computed structures indicate that in both the solid state and the gas phase, coordinated hydrazone groups are less planar than coordinated oximes and this has an adverse effect on intramolecular hydrogen-bond formation to the neighbouring phenolate oxygen atoms
Automatic optimization of load angles for a linear hybrid stepper motor
The objective of this contribution is a linear direct drive based on the working principle of hybrid stepper technology. Herein, reluctant forces enable the thrust of this type of drive. In order to improve the dynamic performance a method adjusting the optimal load angle with
respect to the driven velocity is presented.
Commonly, the phases of the linear hybrid stepper motor (LHSM) are commutated sinusoidal with a constant load angle of 90 degrees. Due to delay times of sensors, actuators and hardware, the coils of the phases are not energized optimally in terms of maximum force application. Thus, variable load angles subject to velocity are introduced.
This contribution comprises the optimization of the load angles. To solve this one-dimensional optimization task, bracketing methods can be used. These algorithms work without derivatives and find the minimum through iterative decreasing of the interval until a desired tolerance is achieved. Regarding the implementation, signal processing has to be done beside the optimization algorithm to ensure feasible solutions. The entire optimization process can be carried out automatically on the test rig. As a result, a characteristic curve is obtained describing the optimal load angle to velocity relation. Including the directionality, the characteristic curves
are distinguished between forward and backward drive. Further properties of the optimization algorithm such as convergence and reproducibility are examined and discussed.
The curves are implemented on a real-time system facilitating a comparison with constant load angle commutation. Velocity control measurements exhibit an improved performance, especially at high motion dynamics
Free-running Sn precipitates : An efficient phase separation mechanism for metastable GeSn epilayers
Optical creation and annihilation of skyrmion patches in a bulk chiral magnet
A key challenge for the realization of future skyrmion devices comprises the
controlled creation, annihilation and detection of these topologically
non-trivial magnetic spin textures. In this study, we report an all-optical
approach for writing, deleting, and reading skyrmions in the cubic chiral
magnet FeCoSi based on thermal quenching. Using focused
femtosecond laser pulses, patches of a skyrmion state are created and
annihilated locally, demonstrating unprecedented control of thermally
metastable skyrmions in a bulk compound. The skyrmion state is read-out by
analyzing the microwave spin excitations in time-resolved magneto-optical Kerr
effect measurements. Extracting the magnetic field and laser fluence
dependence, we find well-separated magnetic field regimes and different laser
fluence thresholds for the laser-induced creation and annihilation of
metastable skyrmions. The all-optical skyrmion control, as established in this
study for a model system, represents a promising and energy-efficient approach
for the realization of skyrmions as magnetic bits in future storage devices,
reminiscent of magneto-optical storage devices in the past
Bis(η5-1-tert-butylindenyl)nickel(II)
The title compound, [Ni(C13H15)2], shows a slightly distorted sandwich structure with two independent molecules in the asymmetric unit. Both Ni atoms are located on crystallographic centres of inversion
Effects of the Back Plate Inner Diameter on the Frictional Heat Input and General Performance of Brush Seals
Reducing losses in the secondary air system of gas and steam turbines can significantly increase the efficiency of such machines. Meanwhile, brush seals are a widely used alternative to labyrinth seals. Their most valuable advantage over other sealing concepts is the very small gap between the sealing package and the rotor and thus reduced leakage mass flow. This small gap can be achieved due to the great radial flexibility without running the risk of severe detrimental deterioration in case of rubbing. Rubbing between rotor and seal during operation might occur as a result of e.g., an unequal thermal expansion of the rotor and stator or a rotor elongation due to centrifugal forces or manoeuvre forces. Thanks to the flexible structure of the brush seal, the contact forces during a rubbing event are reduced; however, the frictional heat input can still be considerable. Particularly in aircraft engines with their thin and lightweight rotor structures, the permissible material stresses can easily be exceeded by an increased heat input and thus harm the engine’s integrity. The geometry of the seal has a decisive influence on the resulting contact forces and consequently the heat input. This paper is a contribution to further understand the influence of the geometrical parameters of the brush seal on the heat input and the leakage during the rubbing of the seal on the rotor. In this paper, a total of three seals with varied back plate inner diameter are examined in more detail. The experimental tests were carried out on the brush seal test rig of the Institute of Thermal Turbomachinery (ITS) under machine-relevant conditions. These are represented by pressure differences of 1 to 7, surface speeds of 30 to 180 m / s and radial interferences of 0.1 to 0.4mm . For a better interpretation, the results were compared with those obtained at the static test rig of the Institute of Jet Propulsion and Turbomachinery (IFAS) at the Technical University of Braunschweig. The stiffness, the blow-down and the axial behaviour of the seals as a function of the differential pressure can be examined at this test rig. It could be shown that the back plate inner diameter has a decisive influence on the overall operating behaviour of a brush seal
Association between infectious burden, socioeconomic status, and ischemic stroke
Background and aims: Infectious diseases contribute to stroke risk, and are associated with socioeconomic status (SES). We tested the hypotheses that the aggregate burden of infections increases the risk of ischemic stroke (IS) and partly explains the association between low SES and ischemic stroke. Methods: In a case-control study with 470 ischemic stroke patients and 809 age- and sex-matched controls, randomly selected from the population, antibodies against the periodontal microbial agents Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis, against Chlamydia pneumonia, Mycoplasma pneumoniae (IgA and IgG), and CagA-positive Helicobacter pylori (IgG) were assessed. Results: IgA seropositivity to two microbial agents was significantly associated with IS after adjustment for SES (OR 1.45 95% CI 1.01-2.08), but not in the fully adjusted model (OR 1.32 95% CI 0.86-2.02). By trend, cumulative IgA seropositivity was associated with stroke due to large vessel disease (LVD) after full adjustment (OR 1.88, 95% CI 0.96e3.69). Disadvantageous childhood SES was associated with higher cumulative seropositivity in univariable analyses, however, its strong impact on stroke risk was not influenced by seroepidemiological data in the multivariable model. The strong association between adulthood SES and stroke was rendered nonsignificant when factors of dental care were adjusted for. Conclusions: Infectious burden assessed with five microbial agents did not independently contribute to ischemic stroke consistently, but may contribute to stroke due to LVD. High infectious burden may not explain the association between childhood SES and stroke risk. Lifestyle factors that include dental negligence may contribute to the association between disadvantageous adulthood SES and stroke. (C) 2016 Elsevier Ireland Ltd. All rights reserved.Peer reviewe
- …