61 research outputs found

    Semantic IoT Solutions - A Developer Perspective

    Get PDF
    Semantic technologies have recently gained significant support in a number of communities, in particular the IoT community. An important problem to be solved is that, on the one hand, it is clear that the value of IoT increases significantly with the availability of information from a wide variety of domains. On the other hand, existing solutions target specific applications or application domains and there is no easy way of sharing information between the resulting silos. Thus, a solution is needed to enable interoperability across information silos. As there is a huge heterogeneity regarding IoT technologies on the lower levels, the semantic level is seen as a promising approach for achieving interoperability (i.e. semantic interoperability) to unify IoT device description, data, bring common interaction, data exploration, etc.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements No.732240 (SynchroniCity) and No. 688467 (VICINITY); from ETSI under Specialist Task Forces 534, 556, 566 and 578. This work is partially funded by Hazards SEES NSF Award EAR 1520870, and KHealth NIH 1 R01 HD087132-01

    Towards Semantic Interoperability Standards based on Ontologies

    Get PDF
    The paper is structured as follows: Section 2 introduces semantic interoperability and its benefits; Section 3 provides industry requirements for semantic interoperability practice; Section 4 describes various initiatives for ontology-driven interoperability; Section 5 explains the various life cycles for ontology-driven interoperability; and finally, Section 6 provides recommendations on ontology-based semantic interoperability.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements No.732240 (SynchroniCity) and No. 688467 (VICINITY); from ETSI under Specialist Task Forces 534, 556, and 566. This work is partially funded by Hazards SEES NSF Award EAR 1520870, and KHealth NIH 1 R01 HD087132-01

    Unexpected Delayed Incursion of Highly Pathogenic Avian Influenza H5N1 (Clade 2.3.4.4b) Into the Antarctic Region

    Get PDF
    The current highly pathogenic avian influenza H5N1 panzootic is having substantial impacts on wild birds and marine mammals. Following major and widespread outbreaks in South America, an incursion to Antarctica occurred late in the austral summer of 2023/2024 and was confined to the region of the Antarctic Peninsula. To infer potential underlying processes, we compiled H5N1 surveillance data from Antarctica and sub-Antarctic Islands prior to the first confirmed cases

    The Crowdsourced Replication Initiative: Investigating Immigration and Social Policy Preferences. Executive Report.

    Get PDF
    In an era of mass migration, social scientists, populist parties and social movements raise concerns over the future of immigration-destination societies. What impacts does this have on policy and social solidarity? Comparative cross-national research, relying mostly on secondary data, has findings in different directions. There is a threat of selective model reporting and lack of replicability. The heterogeneity of countries obscures attempts to clearly define data-generating models. P-hacking and HARKing lurk among standard research practices in this area.This project employs crowdsourcing to address these issues. It draws on replication, deliberation, meta-analysis and harnessing the power of many minds at once. The Crowdsourced Replication Initiative carries two main goals, (a) to better investigate the linkage between immigration and social policy preferences across countries, and (b) to develop crowdsourcing as a social science method. The Executive Report provides short reviews of the area of social policy preferences and immigration, and the methods and impetus behind crowdsourcing plus a description of the entire project. Three main areas of findings will appear in three papers, that are registered as PAPs or in process

    ContrĂŽle mĂ©canique du dĂ©veloppement de graine d’Arabidopsis thaliana

    No full text
    Plant morphogenesis is the result of biochemical and mechanical interactions between cells and tissues.The implications of mechanical signals in the control of cellular processes in plants is well characterized, but their contribution to organ shape acquisition remains to be elucidated. Arabidopsis seeds, whose growth depends on mechanical interactions between two genetically and physically distinct compartments, the endosperm and the seed coat, allowed me to study the contribution of mechanical forces to the control of plant organ shape. During my thesis, I have shown that seeds exhibit two distinct growth phases, an initial phase of anisotropic growth followed by a phase of isotropic growth, and that this growth pattern depends on the mechanical properties of the outer in tegument of the seed coat.Thanks to the development of new technics of in vitro culture of developing seeds, I have shown that aspecific population of cells in the outer in tegument controls the growth of the seed. Furthermore, I have demonstrated that mechanical signals control the anisotropic growth of these cells by organizing cortica microtubules so that cellulose can be deposited in the wallsof the adaxial epidermis of the seed coat according to shape-driven stresses. Finally, I have further shown that the transition from anisotropic toisotropic growth was due to the differentiation of the walls of another layer of the outer in tegument, the adaxial epidermis, which becomes load bearing but has isotropic material properties.La morphogenĂšse des plantes est le rĂ©sultat d’interactions biochimiques mais Ă©galement mĂ©caniques entre cellules et tissus. Bien que l’implication des signaux mĂ©caniques dans le contrĂŽle de processus cellulaires vĂ©gĂ©taux soit connus, leur contribution dans le contrĂŽle de la forme des organes reste Ă  Ă©lucider. L’utilisation des graines d’Arabidopsis, dont la croissance dĂ©pend d’interactions mĂ©caniques entre deux compartiments gĂ©nĂ©tiquement et physiquement distincts : l’albumen et les tĂ©guments maternels, m’a permis d’étudier l’implication des contraintes mĂ©caniques dans le contrĂŽle de la forme des organes. Durant ma thĂšse, j’ai identifiĂ© que la croissance de la graine Ă©tait dĂ©coupĂ©e en deux phases : une phase anisotrope suivie d’une phase isotrope, et que ce patron de croissance dĂ©pendait des propriĂ©tĂ©s mĂ©caniques du tĂ©gument externe. Grace au dĂ©veloppement d’une technique de culture in vitro, permettant l’étude de la graine au cours du temps, j’ai mis en lumiĂšre l’existence d’une population de cellules du tĂ©gument externe dont le patron de croissance corrĂšle avec celui de l’organe. Par la suite, j’ai pu montrer que les signaux mĂ©caniques contrĂŽlaient la croissance anisotrope de ces cellules en influençant l’organisation des microtubules corticaux, qui eux mĂȘme contrĂŽlent la dĂ©position de cellulose dans les parois de l’épiderme abaxial du tĂ©gument externe. J’ai enfin montrĂ© que la transition entre phase anisotrope et isotrope est liĂ©e Ă  la diffĂ©rentiation d’une paroi d’une autre couche du tĂ©gument externe, l’épiderme adaxial, qui acquiĂšre Ă  la fois des propriĂ©tĂ©s mĂ©caniques isotropes, et le rĂŽle de porteur de charge

    ContrĂŽle mĂ©canique du dĂ©veloppement de graine d’Arabidopsis thaliana

    No full text
    Plant morphogenesis is the result of biochemical and mechanical interactions between cells and tissues.The implications of mechanical signals in the control of cellular processes in plants is well characterized, but their contribution to organ shape acquisition remains to be elucidated. Arabidopsis seeds, whose growth depends on mechanical interactions between two genetically and physically distinct compartments, the endosperm and the seed coat, allowed me to study the contribution of mechanical forces to the control of plant organ shape. During my thesis, I have shown that seeds exhibit two distinct growth phases, an initial phase of anisotropic growth followed by a phase of isotropic growth, and that this growth pattern depends on the mechanical properties of the outer in tegument of the seed coat.Thanks to the development of new technics of in vitro culture of developing seeds, I have shown that aspecific population of cells in the outer in tegument controls the growth of the seed. Furthermore, I have demonstrated that mechanical signals control the anisotropic growth of these cells by organizing cortica microtubules so that cellulose can be deposited in the wallsof the adaxial epidermis of the seed coat according to shape-driven stresses. Finally, I have further shown that the transition from anisotropic toisotropic growth was due to the differentiation of the walls of another layer of the outer in tegument, the adaxial epidermis, which becomes load bearing but has isotropic material properties.La morphogenĂšse des plantes est le rĂ©sultat d’interactions biochimiques mais Ă©galement mĂ©caniques entre cellules et tissus. Bien que l’implication des signaux mĂ©caniques dans le contrĂŽle de processus cellulaires vĂ©gĂ©taux soit connus, leur contribution dans le contrĂŽle de la forme des organes reste Ă  Ă©lucider. L’utilisation des graines d’Arabidopsis, dont la croissance dĂ©pend d’interactions mĂ©caniques entre deux compartiments gĂ©nĂ©tiquement et physiquement distincts : l’albumen et les tĂ©guments maternels, m’a permis d’étudier l’implication des contraintes mĂ©caniques dans le contrĂŽle de la forme des organes. Durant ma thĂšse, j’ai identifiĂ© que la croissance de la graine Ă©tait dĂ©coupĂ©e en deux phases : une phase anisotrope suivie d’une phase isotrope, et que ce patron de croissance dĂ©pendait des propriĂ©tĂ©s mĂ©caniques du tĂ©gument externe. Grace au dĂ©veloppement d’une technique de culture in vitro, permettant l’étude de la graine au cours du temps, j’ai mis en lumiĂšre l’existence d’une population de cellules du tĂ©gument externe dont le patron de croissance corrĂšle avec celui de l’organe. Par la suite, j’ai pu montrer que les signaux mĂ©caniques contrĂŽlaient la croissance anisotrope de ces cellules en influençant l’organisation des microtubules corticaux, qui eux mĂȘme contrĂŽlent la dĂ©position de cellulose dans les parois de l’épiderme abaxial du tĂ©gument externe. J’ai enfin montrĂ© que la transition entre phase anisotrope et isotrope est liĂ©e Ă  la diffĂ©rentiation d’une paroi d’une autre couche du tĂ©gument externe, l’épiderme adaxial, qui acquiĂšre Ă  la fois des propriĂ©tĂ©s mĂ©caniques isotropes, et le rĂŽle de porteur de charge

    Note Ă©ditoriale: RĂ©formes scolaires : perspectives internationales

    No full text
    International audienceLe troisiĂšme numĂ©ro rĂ©gulier de la revue INITIO aborde la question des rĂ©formes scolaires sous l’angle international. Tant au QuĂ©bec, au Canada quedans le reste du monde, les systĂšmes d’éducation sont en perpĂ©tuelle transformation, suivant encela l’évolution des sociĂ©tĂ©s. Certains changements dans le milieu de l’éducation Ă©mergent de la base et se font lentement, ou du moins sans Ă©clat, alors que d’autres sontimposĂ©s d’«en haut» (Lessard, 2000) par le pouvoir politique.Dans tous les cas, ces modifications ont pour visĂ©e l’amĂ©lioration du systĂšme scolaire. Comme le soulignent DenommĂ© et St-Pierre (2008):«[...] les rĂ©formes dans le monde de l’éducation font partie de l’histoire de chacun, comme de l’histoire des sociĂ©tĂ©s, dans la mesure oĂč elles ont comme objectif de prĂ©parer les jeunes d’aujourd’hui Ă  la sociĂ©tĂ© de demain»(p. 108).Ceci dit, ces processus de changements, surtout lorsqu’ils sont systĂ©miques, ne se rĂ©alisentpas toujours sans faire de vagueset peuventgĂ©nĂ©rer une forme de rĂ©sistance de la part des acteurs touchĂ©s (BĂ©langer, 2008)

    Imaging the living plant cell: from probes to quantification

    No full text
    International audienceAbstract At the center of cell biology is our ability to image the cell and its various components, either in isolation or within an organism. Given its importance, biological imaging has emerged as a field of its own, which is inherently highly interdisciplinary. Indeed, biologists rely on physicists and engineers to build new microscopes and imaging techniques, chemists to develop better imaging probes, and mathematicians and computer scientists for image analysis and quantification. Live imaging collectively involves all the techniques aimed at imaging live samples. It is a rapidly evolving field, with countless new techniques, probes, and dyes being continuously developed. Some of these new methods or reagents are readily amenable to image plant samples, while others are not and require specific modifications for the plant field. Here, we review some recent advances in live imaging of plant cells. In particular, we discuss the solutions that plant biologists use to live image membrane-bound organelles, cytoskeleton components, hormones, and the mechanical properties of cells or tissues. We not only consider the imaging techniques per se, but also how the construction of new fluorescent probes and analysis pipelines are driving the field of plant cell biology
    • 

    corecore