69 research outputs found

    Dynamics of leg muscle function in tammar wallabies (M. eugenii) during level versus incline hopping

    Get PDF
    The goal of our study was to examine whether the in vivo force-length behavior, work and elastic energy savings of distal muscle-tendon units in the legs of tammar wallabies (Macropus eugenii) change during level versus incline hopping. To address this question, we obtained measurements of muscle activation (via electromyography), fascicle strain (via sonomicrometry) and muscle-tendon force (via tendon buckles) from the lateral gastrocnemius (LG) and plantaris (PL) muscles of tammar wallabies trained to hop on a level and an inclined (10°, 17.4% grade) treadmill at two speeds (3.3 m s^(-1) and 4.2 m s^(-1)). Similar patterns of muscle activation, force and fascicle strain were observed under both level and incline conditions. This also corresponded to similar patterns of limb timing and movement (duty factor, limb contact time and hopping frequency). During both level and incline hopping, the LG and PL exhibited patterns of fascicle stretch and shortening that yielded low levels of net fascicle strain [LG: level, -1.0±4.6% (mean ± s.e.m.) vs incline, 0.6±4.5%; PL: level, 0.1±1.0% vs incline, 0.4±1.6%] and muscle work (LG: level, -8.4±8.4 J kg^(-1) muscle vs incline, -6.8±7.5 J kg^(-1) muscle; PL: level, -2.0±0.6 J kg^(-1) muscle vs incline, -1.4±0.7 J kg^(-1) muscle). Consequently, neither muscle significantly altered its contractile dynamics to do more work during incline hopping. Whereas electromyographic (EMG) phase, duration and intensity did not differ for the LG, the PL exhibited shorter but more intense periods of activation, together with reduced EMG phase (P<0.01), during incline versus level hopping. Our results indicate that design for spring-like tendon energy savings and economical muscle force generation is key for these two distal muscle-tendon units of the tammar wallaby, and the need to accommodate changes in work associated with level versus incline locomotion is achieved by more proximal muscles of the limb

    Respiration and energetics of embryonic development in a large altricial bird, the Australian pelican (Pelecanus conspicillatus)

    Get PDF
    We examined whether the previously reported low cost of embryonic development in pelicans could be attributed to a more efficient conversion of egg energy to hatchling tissues as a result of high initial egg water content, low embryonic metabolic rate and growth later in incubation than in more precocious species. We therefore determined egg and hatchling composition and the development of embryonic respiration in the Australian pelican Pelecanus conspicillatus, which lays one of the largest eggs (140-210 g) with an altricial developmental mode. The small yolk fraction (21%) is typical of all pelecaniforms; however, we found that intraspecific variability in fresh egg mass was related to water content (principally in the albumen), but independent of yolk mass (mean 13 g dry mass). P. conspicillatus eggs have, on average, 635 kJ of energy, irrespective of egg mass across the whole range of egg mass. The embryonic developmental pattern of O2 consumption and CO2 production showed clear plateaus lasting 2-3 days immediately prior to internal pipping, resembling the typical precocial pattern. However, the rate of pre-internal pipping O2 consumption was low in comparison with that of precocial species of similar egg mass. There is no evidence to support the hypothesis that the observed plateau in rates of O2 uptake is due to a diffusion limitation of the eggshell gas conductance in this species. Embryonic metabolic rate nearly doubled during the pipping period, but the mass-independent metabolic rate of the hatchling was low in comparison with that of the resting adult. The total O2 consumed (11 063 ml) is equivalent to 217.3 kJ (or 34% of egg energy) based on indirect calorimetry and the observed respiratory exchange ratio of 0.71. Thus, the cost of development (direct calorimetry) was 0.29 kJ J-1 in the egg (mean egg mass 168 g), which is one of lowest reported values. As a result, the production efficiency of pelican embryonic development was 61.6%, higher than the average for birds in general (56.9%) and, in particular, of seabirds that have prolonged incubation periods on the basis of egg mass. High efficiency in embryonic development in this species was attained as a result of rapid embryonic growth later in incubation, low hatchling energy density (23.6 kJ g-1 dry matter) and dry matter content, low embryonic metabolic rate throughout incubation and a shorter than expected incubation period of 33 days (predicted 36 days).James T. Pearson, Roger S. Seymour, Russell V. Baudinette and Susan Runcima

    Developmental allometry of pulmonary structure and function in the altricial Australian pelican Pelecanus conspicillatus.

    Get PDF
    Quantitative methods have been used to correlate maximal oxygen uptake with lung development in Australian pelicans. These birds produce the largest altricial neonates and become some of the largest birds capable of flight. During post-hatching growth to adults, body mass increases by two orders of magnitude (from 88·g to 8.8·kg). Oxygen consumption rates were measured at rest and during exposure to cold and during exercise. Then the lungs were quantitatively assessed using morphometric techniques. Allometric relationships between body mass (M) and gas exchange parameters (Y) were determined and evaluated by examining the exponents of the equation Y=aMb. This intraspecific study was compared to interspecific studies of adult birds reported in the literature. Total lung volume scales similarly in juvenile pelicans (b=1.05) as in adult birds (b=1.02). However, surface area of the blood–gas barrier greatly increases (b=1.25), and its harmonic mean thickness does not significantly change (b=0.02), in comparison to exponents from adult birds (b=0.86 and 0.07, respectively). As a result, the diffusing capacity of the blood–gas tissue barrier increases much more during development (b=1.23) than it does in adult birds of different sizes (b=0.79). It increases in parallel to maximal oxygen consumption rate (b=1.28), suggesting that the gas exchange system is either limited by lung development or possibly symmorphic. The capacity of the oxygen delivery system is theoretically sufficient for powered flight well in advance of the bird’s need to use it.Roger S. Seymour, Sue Runciman, Russell V. Baudinette and James T. Pearso

    Food cost and availability in a rural setting in Australia

    Get PDF
    Introduction: The burden of chronic diseases is rapidly increasing worldwide. In&nbsp; Australia rural populations have a greater burden of disease. Chronic diseases are largely preventable with diet as a key risk factor. With respect to diet-related chronic disease, dietary risk may be due to poor food access, namely, poor availability and/or the high cost of healthy food. It is likely that poor food access is an issue in rural areas. Objective: To assess food access in rural south-west (SW) Victoria, Australia.Methods: A total of 53 supermarkets and grocery stores in 42 towns participated in a survey of food cost and availability in the rural area of SW Victoria. The survey assessed availability and cost of a Healthy Food Access Basket (HFAB) which was designed to meet the nutritional needs of a family of 6 for 2 weeks.Results: Seventy-two percent of the eligible shops in SW Victoria were surveyed. The study found that the complete HFAB was significantly more likely to be available in a town with a chain-owned store (p&lt;0.00). The complete HFAB was less likely to be available from an independently owned store in a town with only one grocery shop (p&lt;0.004). The average cost of the HFAB across SW Victoria was AU380.30 ± 25.10 (mean &plusmn; SD). There was a mean range in difference of cost of the HFAB of $36.92. In particular, high variability was found in the cost of fruits and vegetables.Conclusions: Cost and availability of healthy food may be compromised in rural areas. Implications: Improvements in food access in rural areas could reduce the high burden of disease suffered by rural communities.<br /

    Development of maximum metabolic rate and pulmonary diffusing capacity in the superprecocial Australian Brush Turkey Alectura lathami: An allometric and morphometric study

    No full text
    Copyright © 2006 Elsevier Inc. All rights reserved.The Australian Brush Turkey Alectura lathami is a member of the Megapodiidae, the mound-building birds that produce totally independent, "superprecocial" hatchlings. This study examined the post-hatching development of resting and maximal metabolic rates, and the morphometrically determined changes in pulmonary gas exchange anatomy, in chicks during 3.7 months of growth from hatchlings (122 g) to subadults (1.1 kg). Allometric equations of the form y=aM(b) related gas exchange variables (y) to body mass (M, g). Metabolic rates were measured with open-flow respirometry (mL O2 min(-1)) of chicks resting in the dark and running above the aerobic limit on a treadmill. Resting metabolic rate (RMR=0.02 M(0.99)) and maximal metabolic rate (MMR=0.05 M(1.07)) scaled with exponents significantly above those of interspecific allometries of adult birds. However MMR was below that expected for other species of adult birds in flapping flight, consistent with the Brush Turkey's ground-dwelling habits. Total lung volumes (mL) increased faster than isometrically (V(L)=0.0075 M(1.19)), as did the surface area (cm(2)) of the blood-gas barrier (S(t)=7.80 M(1.23)), but the data overlapped those of adult species. Harmonic mean thickness of the blood-gas barrier was independent of body size (mean tau(ht),=0.39 microm) and was about twice that expected for flying birds. Diffusing capacity (mL O2 min(-1) kPa(-1)) of the blood-gas tissue barrier increased faster than isometrically (Dto2=0.049 M(1.23)); in hatchling Brush Turkeys, it was about 30% expected for adult birds, but this difference disappeared when they became subadults. When compared to altricial Australian pelicans that hatch at similar body masses, superprecocial Brush Turkeys had higher MMR and higher Dto2 at the same body size. A parallel allometry between MMR and Dto2 in Brush Turkeys and pelicans is consistent with the concept of symmorphosis during development.Roger S. Seymour, Sue Runciman and Russell V. Baudinettehttp://www.elsevier.com/wps/find/journaldescription.cws_home/525464/description#descriptio

    Routine metabolic rate of southern bluefin tuna (Thunnus maccoyii)

    No full text
    Copyright © 2006 Elsevier Inc. All rights reserved.Routine metabolic rate (RMR) was measured in fasting southern bluefin tuna, Thunnus maccoyii, the largest tuna species studied so far (body mass=19.6 kg (+/-1.9 SE)). Mean mass-specific RMR was 460 mg kg(-1) h(-1) (+/-34.9) at a mean water temperature of 19 degrees C. When evaluated southern bluefin tuna standard metabolic rate (SMR) is added to published values of other tuna species, there is a strong allometeric relationship with body mass (423 M(0.86), R(2)=0.97). This demonstrates that tuna interspecific SMR scale with respect to body mass similar to that of other active teleosts, but is approximately 4-fold higher. However, RMR (not SMR) is most appropriate in ram-ventilating species that are physiologically unable to achieve complete rest. Respiration was measured in a large (250,000 l) flexible polypropylene respirometer (mesocosm respirometer) that was deployed within a marine-farm sea cage for 29 days. Fasted fish were maintained within the respirometer up to 42 h while dissolved oxygen dropped by 0.056 (+/-0.004) mg l(-1) h(-1). Fish showed no obvious signs of stress. They swam at 1.1 (+/-0.1) fork lengths per second and several fed within the respirometer immediately after measurements.Q.P. Fitzgibbon, R.V. Baudinette, R.J. Musgrove and R.S. Seymourhttp://www.elsevier.com/wps/find/journaldescription.cws_home/525464/description#descriptio
    • …
    corecore