184 research outputs found

    The Bean-Livingston barrier at a superconductor/magnet interface

    Full text link
    The Bean-Livingston barrier at the interface of type-II superconductor/soft-magnet heterostructures is studied on the basis of the classical London approach. This shows a characteristic dependence on the geometry of the particular structure and its interface as well as on the relative permeability of the involved magnetic constituent. The modification of the barrier by the presence of the magnet can be significant, as demonstrated for a cylindrical superconducting filament covered with a coaxial magnetic sheath. Using typical values of the relative permeability, the critical field of first penetration of magnetic flux is predicted to be strongly enhanced, whereas the variation of the average critical current density with the external field is strongly depressed, in accord with the observations of recent experiments.Comment: RevTeX 4; revised version; accepted in Journal of Physics: Condensed Matte

    Dynamical Evolution of Planetary Systems

    Full text link
    Planetary systems can evolve dynamically even after the full growth of the planets themselves. There is actually circumstantial evidence that most planetary systems become unstable after the disappearance of gas from the protoplanetary disk. These instabilities can be due to the original system being too crowded and too closely packed or to external perturbations such as tides, planetesimal scattering, or torques from distant stellar companions. The Solar System was not exceptional in this sense. In its inner part, a crowded system of planetary embryos became unstable, leading to a series of mutual impacts that built the terrestrial planets on a timescale of ~100 My. In its outer part, the giant planets became temporarily unstable and their orbital configuration expanded under the effect of mutual encounters. A planet might have been ejected in this phase. Thus, the orbital distributions of planetary systems that we observe today, both solar and extrasolar ones, can be different from the those emerging from the formation process and it is important to consider possible long-term evolutionary effects to connect the two.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H. Deeg & J.A. Belmont

    Characterizing Multi-planet Systems with Classical Secular Theory

    Full text link
    Classical secular theory can be a powerful tool to describe the qualitative character of multi-planet systems and offer insight into their histories. The eigenmodes of the secular behavior, rather than current orbital elements, can help identify tidal effects, early planet-planet scattering, and dynamical coupling among the planets, for systems in which mean-motion resonances do not play a role. Although tidal damping can result in aligned major axes after all but one eigenmode have damped away, such alignment may simply be fortuitous. An example of this is 55 Cancri (orbital solution of Fischer et al., 2008) where multiple eigenmodes remain undamped. Various solutions for 55 Cancri are compared, showing differing dynamical groupings, with implications for the coupling of eccentricities and for the partitioning of damping among the planets. Solutions for orbits that include expectations of past tidal evolution with observational data, must take into account which eigenmodes should be damped, rather than expecting particular eccentricities to be near zero. Classical secular theory is only accurate for low eccentricity values, but comparison with other results suggests that it can yield useful qualitative descriptions of behavior even for moderately large eccentricity values, and may have advantages for revealing underlying physical processes and, as large numbers of new systems are discovered, for triage to identify where more comprehensive dynamical studies should have priority.Comment: Published in Celestial Mechanics and Dynamical Astronomy, 25 pages, 10 figure

    Tunable unconventional Kondo effect on topological insulator surfaces

    Get PDF
    We study Kondo physics of a spin-12 impurity in electronic matter with strong spin-orbit interaction, which can be realized by depositing magnetic adatoms on the surface of a three-dimensional topological insulator. We show that magnetic properties of topological surface states and the very existence of Kondo screening strongly depend on details of the bulk material, and specifics of surface preparation encoded in time-reversal preserving boundary conditions for electronic wavefunctions. When this tunable Kondo effect occurs, the impurity spin is screened by purely orbital motion of surface electrons. This mechanism gives rise to a transverse magnetic response of the surface metal, and to spin textures that can be used to experimentally probe signatures of a Kondo resonance. Our predictions are particularly relevant for STM measurements in PbTe-class crystalline topological insulators, but we also discuss implications for other classes of topological materials

    Planet Populations as a Function of Stellar Properties

    Full text link
    Exoplanets around different types of stars provide a window into the diverse environments in which planets form. This chapter describes the observed relations between exoplanet populations and stellar properties and how they connect to planet formation in protoplanetary disks. Giant planets occur more frequently around more metal-rich and more massive stars. These findings support the core accretion theory of planet formation, in which the cores of giant planets form more rapidly in more metal-rich and more massive protoplanetary disks. Smaller planets, those with sizes roughly between Earth and Neptune, exhibit different scaling relations with stellar properties. These planets are found around stars with a wide range of metallicities and occur more frequently around lower mass stars. This indicates that planet formation takes place in a wide range of environments, yet it is not clear why planets form more efficiently around low mass stars. Going forward, exoplanet surveys targeting M dwarfs will characterize the exoplanet population around the lowest mass stars. In combination with ongoing stellar characterization, this will help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    The Rossiter-McLaughlin effect in Exoplanet Research

    Full text link
    The Rossiter-McLaughlin effect occurs during a planet's transit. It provides the main means of measuring the sky-projected spin-orbit angle between a planet's orbital plane, and its host star's equatorial plane. Observing the Rossiter-McLaughlin effect is now a near routine procedure. It is an important element in the orbital characterisation of transiting exoplanets. Measurements of the spin-orbit angle have revealed a surprising diversity, far from the placid, Kantian and Laplacian ideals, whereby planets form, and remain, on orbital planes coincident with their star's equator. This chapter will review a short history of the Rossiter-McLaughlin effect, how it is modelled, and will summarise the current state of the field before describing other uses for a spectroscopic transit, and alternative methods of measuring the spin-orbit angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H. Deeg & J.A. Belmont

    Misaligned Protoplanetary Disks in a Young Binary System

    Get PDF
    Many extrasolar planets follow orbits that differ from the nearly coplanar and circular orbits found in our solar system; orbits may be eccentric or inclined with respect to the host star's equator, and the population of giant planets orbiting close to their host stars suggests significant orbital migration. There is currently no consensus on what produces such orbits. Theoretical explanations often invoke interactions with a binary companion star on an orbit that is inclined relative to the planet's orbital plane. Such mechanisms require significant mutual inclinations between planetary and binary star orbital planes. The protoplanetary disks in a few young binaries are misaligned, but these measurements are sensitive only to a small portion of the inner disk, and the three-dimensional misalignment of the bulk of the planet-forming disk mass has hitherto not been determined. Here we report that the protoplanetary disks in the young binary system HK Tau are misaligned by 60{\deg}-68{\deg}, so one or both disks are significantly inclined to the binary orbital plane. Our results demonstrate that the necessary conditions exist for misalignment-driven mechanisms to modify planetary orbits, and that these conditions are present at the time of planet formation, apparently due to the binary formation process.Comment: Published in Nature, July 31 2014. 18 pages. This version has slight differences from the final published version. Final version is available at http://www.nature.com/nature/journal/v511/n7511/full/nature13521.htm
    • 

    corecore