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In comparison with linear accelerator structures the circular accelerator has the additional complica-
tion that a change in momentum spread due to longitudinal space-charge forces immediately
influences the transverse particle distribution. The isochronous cyclotron is especially sensitive to this
effect because of the absence of longitudinal focusing. In this paper we derive a set of differential
equations for the second-order moments of the phase-space distribution function that takes into
account this special feature of the circular accelerator. For the isochronous cyclotron a smoothed
system of equations is also obtained that gives additional insight into the problem. The derivation is
an application of the RMS (root-mean-square) approach in which only the linear part of the
space-charge forces (as determined by a least-squares method) is taken into account and the charge
distribution is assumed to have ellipsoidal symmetry. Since the longitudinal-transverse coupling may
destroy the symmetry of the bunch with respect to the reference orbit, we allow the ellipsoid to be
rotated around its vertical axis. We only consider free single bunches; i.e., we do not consider forces
arising from image charges and from neighboring turns. Different integrals of motion of the moment
equations are obtained including the total angular canonical momentum in the bunch, the total energy
content of the bunch, and the RMS representation of the 4-dimensional horizontal phase-space
volume. For bunches with a circular horizontal cross section the smoothed-moment equations reduce
to RMS-envelope equations. Some numerical results obtained with the model will be presented, with
the 3-MeV minicyclotron (ILEC) presently under construction at the Eindhoven University taken as
an example.

1. INTRODUCTION

Analytical studies of space-charge effects in accelerators that have appeared in
the literature thus far are mainly concerned with linear structures.'™ For circular
accelerators such as the cyclotron the analysis is mostly done with numerical
calculations based on many-particle codes.*> In comparison with a linear
structure the circular accelerator has the special feature that the transverse
position of the particle depends on the longitudinal momentum due to dispersion
in the bending magnets. This means that a change in longitudinal momentum
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spread immediately influences the transverse particle distribution. Particles in the
“tail” of the bunch will lose energy due to the longitudinal space-charge forces
and thus move to a smaller radius. The opposite happens for the leading particles
in the bunch. The isochronous cyclotron is especially sensitive to this effect
because there exists no rf focusing in the longitudinal phase space. Numerical
calculations by Adam® show that the effect can become really important in an
isochronous cyclotron.

Approximate representations of relevant properties of the bunch such as the
sizes and the momentum spread are obtained from the second-order moments of
the phase-space distribution function. In this paper we derive differential
equations that determine the time dependence of these moments. This time
dependence is directly related to the time dependence of the distribution function
as determined by the Vlasow equation. This equation can be obtained from
Liouville’s theorem, and therefore the time dependence of the moments follows
from the Hamiltonian. Now, the second-moment equations form a closed system
if the equations of motion for the single particle are linear in the variables, i.e.,
for a Hamiltonian quadratic in the variables. Therefore we will use a linear
approximation for the external forces as well as for the space-charge forces. In
the derivation we will neglect the forces that arise from image charges. Moreover
we will neglect the forces produced by the bunches in the neighboring turns. We
expect that for the central region this will be a reasonable assumption because in
this region the turns are usually well separated. In regions where the turns
overlap significantly the approach will become less useful, however.

In Section 2 first of all some basic equations are presented. In Section 3 we
derive a suitable Hamiltonian for the linearized particle motion in the external
magnetic field without space charge. For this we make the same approximations
as in Ref. 7; the most important is the assumption of an azimuthal variation of the
magnetic field that is not too large. For convenience we omit the acceleration
process. The derivation is such, however, that acceleration can be included in a
straightforward way using methods developed by Schulte et al.>* The Hamil-
tonian describes the particle motion in a coordinate system that moves with the
bunch along a reference orbit (equilibrium orbit). Due to the azimuthal variation
of the magnetic field the Hamiltonian depends explicitly on time. By a smoothing
procedure this time dependence is removed, resulting in a simpler Hamiltonian
for an isochronous cyclotron.

In Section 4 we then define an electric space-charge potential that is quadratic
in the variables and that must be added to the unperturbed Hamiltonian. This
potential also includes the magnetic self-field of the bunch. For the definition we
generalize Sacherer’s approach,” in which the linear part of the forces is
determined by a least-squares method and the charge distribution is assumed to
have ellipsoidal symmetry. Here we allow this ellipsoid to be rotated around the
vertical axis through the bunch because the dispersion effect in the cyclotron may
destroy the symmetry of the bunch with respect to the equilibrium orbit. For the
calculation of the electric fields we neglect the curvature of the equilibrium orbit.
This will be a good approximation as long as the transverse size of the bunch is
small compared with the local radius of curvature. With these assumptions the
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coefficients in the potential function can be expressed in terms of the second
moments of the charge distribution.

In Section 5 we derive two systems of moment equations using the results
obtained in Section 3 for the particle motion in the external magnetic field and
the electric space-charge potential derived in Section 4. Each system forms a set
of thirteen coupled first-order differential equations. The first system corresponds
to the time-dependent Hamiltonian and may be considered as being the most
general of these two in the sense that the least amount of approximation has been
used in the derivation. The second system corresponds to the smoothed
Hamiltonian for the isochronous cyclotron. These equations contain the addi-
tional approximation that the influence of the smoothing procedure on the
electric potential function is neglected. On the other hand these equations may
give additional insight into the problem. Within the approximations made, the
numerical integration of the moment equations will give a description of the RMS
properties of the bunch under space-charge conditions.

2 BASIC EQUATIONS

We consider a canonical system with generalized coordinates x= (x, s, z),
canonical momenta p = (p,, ps, p.), and independent time variable ¢. The motion
of the particle follows from the Hamiltonian H = H(x, p, ¢) via the Hamiltonian
equations:
dx_oH dp_ _oH 1
dt op’ dt ox’ )

The phase-distribution function f(x, p, ¢) is defined as the particle density in the
6-dimensional phase space:
dN =f(x, p, t) dx dp, )

where dN is the number of particles in the phase-space volume dx dp. The total
number of particles in the bunch then becomes

N=f7f(x,p,t) dx dp. 3)

According to Liouville’s theorem the distribution function f remains constant for
an observer who travels with an arbitrary particle in phase space. This means that
fis an integral of motion of the canonical system:

df of ofdx ofd

dt ot oxdt OJpdt

Substitution of Hamilton’s equations [Eq. (1)] into Eq. (4) gives the Vlasow
equation:

ot opox oxop %)
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Under space-charge conditions the Hamiltonian H takes the following form:

H(x,p,t) = Hy(x,p, t) + qp(x, ) (6)

where g is the charge of the particle, ¢ is the potential function due to all the
other particles in the bunch, and H, is the Hamiltonian corresponding to the
external forces.

We introduce a curved coordinate system (x, s, z), where x is the horizontal
coordinate of the particle with respect to the curved orbit, s is the distance along
the curved orbit, and z is the vertical coordinate. If we ignore for the moment the
self-consistent magnetic field, then the potential function ¢ follows from the
Poisson equation. In the curved coordinate system this equation becomes

i ) S S w3 1) B -2 o

where p is the space-charge density in the bunch and p. = p.(s) is the local radius
of curvature of the curved orbit. However, in the subsequent analysis it is
assumed that the transverse size of the bunch is much smaller than the local
radius of curvature p.(s). In this case, the coordinate system can be approximated
locally as being cartesian, and the Poisson equation simplifies to

> ¢ Fo I 4
ot St —m= - 8
ox?  os*  3z° £ ®)

The self-consistent magnetic field can be included if we neglect the velocity
spread in the bunch, i.e., if we assume that all particles have the same velocity v,.
Equation (8) then must be slightly adapted to the form:

3 3 18
et ©
ox 0z® y° Os &Y

where y = (1 —v3/c?) ™ and c is the speed of light. Finally, the charge density p is
simply related to the distribution function f via the formula:

00

___ 4
1+x/p. ) _w

px. 1) fpdp=aq [ ftx.p.0)dp (10)

The second moments of the distribution function are defined as expectation
values of the products of two canonical variables. For example, for the second
moment (xp,) we obtain

() = [ [ xpf e .0 dxap. ay

The Vlasov equation determines the time evolution of the second moments.
Consider as an example a system with only one degree of freedom where
H = H(x, p,, t). If we multiply the Vlasow equation by x>, xp,, and p? and
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integrate over the phase space we obtain the following system of equations:

=23
dtx>—2x8px
Lm0 2)-(:2) -
4P =\ ) T\ gy (12)
42 __< §f_1>
dt<px>_ 2anx ’

where partial integration has been used to calculate the right-hand sides. [We
note that Eqgs. (12) immediately follow by interchanging the averaging and the
differentiation in the left-hand sides of the equations.] From Egs. (12) it follows
that for a Hamiltonian quadratic in the variables, the right-hand sides depend on
second moments only. In this case the system of equations is closed, provided
that the coefficients in the Hamiltonian can be expressed in terms of the second
moments or that their time dependence is known.

3 THE SINGLE PARTICLE HAMILTONIAN

In this section we derive a suitable Hamiltonian H, for the linearized motion of
nonaccelerated particles in an azimuthally-varying-field (AVF) cyclotron. It is
assumed that the magnetic field has perfect symmetry with respect to the median
plane and perfect S-fold rotational symmetry (S = 3). Furthermore, it is assumed
that the amplitude of the azimuthal variation of the magnetic field is not too
large. In this respect the same approximations as in Ref. 7 will be used.

In polar coordinates (r, 6) the magnetic field in the median plane can be
separated into an average part and an azimuthally varying part (the flutter) that is
represented by a Fourier series:

B(r, )= B(r){l + > [A,(r) cos n6 + B, (r) sin nG]} , (13)

where B(r) is the average field at radius r. Due to the assumed S-fold symmetry,
only terms with n =kS, k=1,2,3..., are present in the Fourier series. We
consider a reference particle with kinetic momentum F,, and associated with this
kinetic momentum we define a reference radius r, with the relation P = qr,B(r,).
For subsequent use we introduce the following field quantities to be evaluated at
the reference radius ry:

"—(i—@) A, =A
- Bdr m’ n— n(rO)

(14)

dA d*A
"ar " " ar ),

0

and similar definitions for the sine coefficients.
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For the study of space-charge effects it is convenient to use curved coordinates
instead of polar coordinates. For this purpose we choose the so-called equilibrium
orbit as reference orbit. The equilibrium orbit is defined as a closed orbit in the
median plane with the same S-fold symmetry as the magnetic field. In polar
coordinates the equilibrium orbit for the reference particle is given by the
relation’:

3n* -2 1 , ,
r.(0) = ’0{1 - 2[;1—(”—2_—1)2 (A2 +B) + 202=1) (A.A,+ Ban)]
A, B, .
+Z<n2_1cosn0+n2_lsmn9>}. (15)

The effective radius R, is defined as the length of the equilibrium orbit divided by
2x. Using Eq. (15) we obtain for Ry:

A2+ B2+ A,A,+ B,B,
R0=r0[1 -> ]

2(”2 - 1) (16)

The general expression for the Hamiltonian H, in the curved coordinate system
is given by

172
Ho=| B3+ (p. = gA) 4 (0.~ g P + (2 —aa )| L an)
where E, = mqc? is the rest energy of the particle, m, is the rest mass, p.(s) is the
local radius of curvature of the curved orbit, and A,, A, A, are the components
of the magnetic vector potential. We choose the coordinate system such that
(x,s,z) form a left-handed system. With this definition a positively charged
particle moves in the direction of increasing s when the magnetic field is pointing
in the positive z direction.
If B(x, s) is the median-plane field as a function of the new coordinates x and s,
then a related vector potential in the left-handed system is
1,2
298, (%)

Acx, 5, 2) = 1+x/p. Os

B 1 x x'
‘ =322 —~— 1+—)B ', s)dx' +0(z*
Ay(x, s,2)=32 ™ 1+X/Pcfo ( o (x', s)dx' + O(z%) (18)

A,(x,s, z)=0.

Here we used the symmetry of the magnetic field with respect to the median
plane z = 0. To calculate this vector potential we need the median-plane magnetic
field B as a function of the new coordinates x and s. For this we make the
transformation from the polar coordinates r and 6 to the curved coordinates x
and s using the expression for the equilibrium orbit [Eq. (15)] and substitute the
result into the expression for the median-plane field, Eq. (13). Expanding A, and
A, with respect to x/r, and z/r, and retaining terms up to second degree, we
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obtain for the vector potential:
2

A(x,s, z)= rOB(rO)B% 2<nA sin R_o —nB, cos Zi)] (19)
At = -nBe| 215 (0.4 8) 415 0.] 20)

Here Q,(s) and the local radius of curvature p.(s) are given by
o n*(AL+ B})+ A,A, + B,B,+ A,A, + B,B,
2(n*-1)

0.5)= - [+

+Z(A cosR—+B snR—s>] (21)

3 (n*—2)(A%+ B,) — (A,A, + B,B,)

pc(a) = rO[l + 2(’!2 _ 1)

ns ns
-D1A, —+ B, si —)] 22
Z( cos R, st0 (22)

Due to the choice of the coordinate system the variables x, z, p,, and p, may
be assumed to be small compared to r, and F,. This is not so for the variables s
and p,. Therefore, we introduce a new longitudinal momentum p, as the
deviation between the true canonical momentum p, and the kinetic momentum P,
of the reference particle. Furthermore, we introduce a new coordinate system
that moves with the reference particle, i.e., we define a new longitudinal
coordinate § that gives the position in the bunch with respect to the “center” of
the bunch defined as the position of the reference particle. The transformation
becomes

s =vot +§; ps = Py + ps, (23)

where v,= Py/ym, is the velocity of the reference particle. The generating
function for this transformation is

_ ; G
G(ps, $, 1) =§(Po— ps) — Vopst;  —— = —Ugps. (24)

ot
All new variables may now be considered as being small quantities, and therefore
the Hamiltonian can be expanded with respect to the coordinates and the
momenta. We take into account terms up to second degree in the variables. This
corresponds to linear equations of motion. We find for the new Hamiltonian:

oG

Hy=Hy+—
0 0 a[

W AYRYASRITAS
a1 2
vt \p) T2\R) T2\yp,

+%QX(I)<?:—O>Z+%QZ(T)<; ) —n(r )__] (25)
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Here we have omitted a constant term (E2+ P2c?): because this term does not
contribute to the form of the equations of motion. The variable 7 is defined
below. For the quantities Q,, Q,, and n we find the expressions:

+B2)+A,A,+B,B, +A,A. + B,B,
2(n*—1)

0.0 =1+ + 3~

+> (2A,+A.) cosnt + (2B, + B,)sinnt (26)

—n*(A2+ B2)+A,A,+ B,B,+ A,A, + B,B
=—|p+
Qz(t) I:I"’ 2 2(”2 _ 1)
+ >, Al cosnt + B sin m'] 27
n(t) = Ro =1+ A,cosnt+ B, sinnt (28)
pc(7) " "

To eliminate the constants vy, F,, and R, is the Hamiltonian [Eq. (25)] we
introduce new relative variables and a new dimensionless time unit t defined such
that an increase of 2z corresponds to one revolution of the bunch in the
cyclotron. The variables are normalized on quantities belonging to the reference
orbit and the reference particle. To maintain Hamilton’s equations, the Hamil-
tonian must be adjusted accordingly. It is convenient also to normalize the charge
density p, the electric potential function ¢, and the phase-space distribution
function f. The scale transformation is defined by

f_i Z-_.Z_ g—ﬁ
R, R, "R
sl 5P 5 B
X Po z P() s YP() (29)
W g H
Ro voF
Rip - _4q¢ 5 n3p3
p=—2 H=—" = R3P3f.
p qv ¢ voPs f 0 of

The Hamiltonian under space-charge conditions [Eq. (6)] and the single-particle
Hamiltonian [Eq. (25)] now become

H(, p, ©) = Hy+ $(X,7) (30)
Hy=1p2+1p2+3p2+ 30, ()% +30.(1)2% — yn(7)ip,. (31)

The potential function ¢ follows from Eq. (9), which now, due to the
transformation [Eq. (29)], transforms into the usual Poisson equation:

82 g 82 e 82 = 2 B
29,28, (4 ), -
ox o5 oz £9YVoR P
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We obtain the expressions for the charge density p and the number of particles in
the bunch N from Egs. (3) and (10):

o= j [7&p. v ap (33)

N=”] (X, 7) dx. (34)

The Hamiltonian H given in Egs. (30) and (31) describes the motion of a single
particle with respect to an approximately cartesian coordinate system. This
coordinate system itself moves with the bunch along the reference orbit. In
Section 5 we derive from this Hamiltonian the nonsmoothed-moment equations.

The equations of motion as derived from the unperturbed Hamiltonian H,
show that Z obeys an homogeneous Hill equation and ¥ an inhomogeneous Hill
equation with momentum deviation as a driving term:

d’*x
T3+ 0DE = (0P, (35)
d’z
d—; +0.(v)z=0. (36)

Equation (35) shows the influence of the longitudinal momentum deviation on the
horizontal position of the particle, as mentioned in the introduction. In the
absence of space charge, j, is an integral of motion because H, does not depend
on 5. However, due to space charge, p, will change, and Eq. (35) cannot be
solved separately from the longitudinal motion. Also the longitudinal motion is
coupled with the transverse motion as follows from Hamilton’s equation for §:

ds
S =h (% G37)

The equilibrium orbit for particles with a longitudinal momentum deviation p; is
found as the periodic solution of Eq. (35). For this we obtain

A2+ B2+ 4(A,A,+ B,B,)+ A,A.+ B,B, + A’ + B}
2(n*-1)
A, +A, B,+B,) .
+, ((2—1) cosnt +(———)sm nr)] . (38)

= n?— n—1

ie=7ﬁs[1—ﬂ’—2

. . ds o
The cyclotron is isochronous if the average value of e over one revolution is zero
T

for particles with deviating momentum p, that follow the equilibrium orbit [Eq.
(38)]. Substituting Eq. (38) into Eq. (37) we find the condition for isochronism:

vt L5 AL BB AN BB+ AL B
# v 22— 1) ‘

The quantities Q,, Q,, and 7 as given in Egs. (26), (27), and (28) contain a

(39)
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time-dependent oscillating part, and therefore H, is not an integral of motion. As
has been shown in Ref. 7 the oscillating parts of the Hamiltonian can be
transformed to higher order in the magnetic-field flutter (i.e. the azimuthally
varying part of the magnetic field) such that, within our approximations, the new
oscillating parts can be neglected. For this purpose a linear canonical transforma-
tion that changes the coordinates and momenta only slightly is applied; the
difference between the old and new variables is on the order of the flutter. The
new smoothed Hamiltonian H, has the same shape as in Eq. (31) with Q,, Q,,
and 7 replaced by time-independent values vZ, vZ, and 7, where v, and v, are the
horizontal and vertical tune, respectively. The new Hamiltonian becomes

Hy=3p%+3p2 + 305+ 3vi% +3vi2° — yilip,, (40)
where ¥,Z,§ are the new canonical coordinates and p,,p,,p, the new canonical
momenta. For v,, v,, and 7 we find the expressions:
3n*(AZ+ BZ) + (5n* —8)(A,A, + B,B))

4(n*—1)(n*—4)
A,AL+B,B, A}?+B)}
+ n n n n n 41
2( 4(n*-1) 4(n2—4)> (41)

ve=1+3a"+2,

—n*(A%+ B%) + A,A.+ B,B, " v A2, pn
Vf=—[ﬁ'+2( dl ) TS ”+A"A"+Bn3n_A,,+B">]
2(n '—1) 2n2
(42)
= 3n’*(A2+ B2) + 2(n* +2)(A, A, + B,B.) + 3(A?> + B?

4(n*—1)(n*—4)

We note that the expressions for v, and v> agree with the results given in Ref.
(7). 1f Egs. (41) and (43) are used the condition for isochronism [i.e. Eq. (39)]
can be written as

Vx
Y2 _ ? = ()’ (44)

and with this expression the Hamiltonian H, for an isochronous cyclotron
simplifies to ~

Hy=3p2+3(p, — v.X)* + 3p2 + 3viZ2 (45)
This Hamiltonian can be brought into a symmetric form with a canonical

transformation to new momenta p,, p,, p, that leaves the coordinates unchanged.
The transformation is defined as

G = —ip, — 3P, — 5p, + hv %5

P=P:+3v§  pi=p;+ivik  p.=p, (46)

i=2% §=3 z=3.

With this transformation the smoothed Hamiltonian for the isochronous cyclotron
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takes the final form:

Ho=3(p. +3v.8) + 3(p, — 3v.2)° +3p7 + 3v22% (47)
In Section 5 this Hamiltonian will be used to obtain the smoothed-moment
equations. We note that the part of this Hamiltonian that describes the horizontal
motion has the same structure as the Hamiltonian for a particle that moves in a
homogeneous magnetic field. From this it results that, for an isochronous
cyclotron in the absence of space charge and within the smooth approximation
made for the derivation of Eq. (40), the particle in the bunch carries out a
circular motion in the coordinate system moving with the bunch. The motion will
be more complicated in reality, but nevertheless it will have approximately the
same characteristics. The coordinates of the center of the circle (£, §.) and also
its radius 4, are integrals of motion of H,. For the vertical motion the quantity
I, = 1p? +31v?5?% is an integral. Solving the equations of motion resulting from H,
we find for £, §., and )ALO:

£ =32+ v 'p,

vaﬂ

— Vi Ps (48)

ié— (5 = v, + (35 + vi 5.2

In the absence of space charge, any function that depends only on the integrals
£., §., A, and I, would be a stationary distribution.

We also note that the coupling in the Hamiltonian H, given in Eq. (47) can be
removed with a transformation to the “Larmor frame.” This frame rotates with
frequency 3v, in the horizontal plane around the vertical axis through the bunch.
The transformation is defined as

G = —z;p, — (P.x; + Pssi) cos 3V = (PxSt — Psx;) Sin 3,7 (49)
22 = bv.(sp, ~55.)
£=x,cosiv.T+s,sin3v,T, Px = Pxi COS 3V, T + py sin 3v, T
§ = —x; sin 3v, T + 5, cos 3v, T, Ps = —Px SIN 3V, T + py; COS 3V, T
2=z, P:=Du

where x;, s;, z;, pu, Psi, and p,; are the new variables in the Larmor frame. The
Hamiltonian in the Larmor frame becomes

Ho = 3p2%+3ph+ 3p% + svi(xi + s7) + 3v2z]. (50)

It should be noted that the Poisson equation is invariant for the point
transformation defined in Eq. (49), and furthermore that the equations of motion
as derived from H, have the same shape as the equations of motion used for the
study of space-charge effects in linear accelerator structures.” Consequently, the
same kind of space-charge solutions as obtained in linear accelerator structures
will be possible for the Hamiltonian in the Larmor frame H,. Thus, envelope
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equations for the RMS sizes of the bunch in the rotating Larmor frame could be
derived exactly as done by Sacherer? for ellipsoidal bunches in linear accelerator
structures. However, in the initial nonrotating frame (%, §, Z) these bunches then
rotate with the frequency 3v, around the vertical axis. Therefore, this special
solution does not seem to be very useful in practice, except perhaps for very short
bunches with approximately equal longitudinal and radial sizes.

4 THE ELECTRIC POTENTIAL FUNCTION

As mentioned in the introduction we want to use a linear approximation for the
space-charge forces. With this condition satisfied we obtain a closed system of
differential equations for the second moments, as pointed out in Section 2,
provided that the coefficients in the electric potential function can be expressed in
terms of the second moments. We assume that the charge distribution is
symmetric with respect to the median plane and that the bunch is centred with
respect to the equilibrium orbit. The most general approximation for the electric
potential function, giving linear space-charge forces, then becomes

Po(X, T) = —3a(7)x* — d(T)%5 — 3b(7)5* — 3c(7)Z% (51)

The term d(7)xs is included to take into account a possible nonsymmetric
distribution of the bunch (with respect to the equilibrium orbit) that may occur as
a result of the transverse-longitudinal coupling in the unperturbed Hamiltonian.
The linear approximation for the electric field as derived from Eq. (51) becomes

E.,=- % =a(1)x +d(1)§
E=-% _ o)z 4 b(o)s
0= T 5 ()X + b(7)s (52)
3o ..
E,, =— 27 c(7)z

We use the least-squares method, as introduced in Ref. 2, for the definition of the
linear part of the electric field; i.e., we minimize the averaged difference D
between the actual electric field and its linear approximation, where D is defined
as

D= wa |E0 - Elzf(f’ p, ) dx dp
= ” [(ax + d5s — E,)* + (dx + b5 — E,)* + (cz — E,)’]f (%, p, T) dk dp, (53)

where E,, E,, and E, are the actual components of the electric field.
Differentiation of Eq. (53) with respect to a, d, b and c, respectively, gives the
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following system of equations for the coefficients a, b, ¢, and d:

a(x*) + d(x5) = (XE,)
(a +b)(%5) +d({®) + (§%)) = (SE,) + (XE;)

d(xs) + b(5*) = (SE,)

c(2%) = (ZE,).

The solution of this system of equations gives a, b, ¢, and d in terms of the
second moments (%2), (%5), (5%), (z*) and the yet-unknown terms (XE,),
(SE,), (xE,), (SE,), and (ZE.). In the following we express these unknown
terms as functions of the second moments (¥2), (¥5), (5%), and (z?). For this

we assume that the charge distribution has ellipsoidal symmetry; the charge
density then depends on only one parameter U as follows:

x\% 2% [§\* [z\?
p = p(U), U=<—-) +——+(—:> +<—:>
p=p) a) "2 \B) T\¢é (53)
To find solutions of the electric field we rotate the coordinate frame over a

yet-unknown angle @ in the horizontal plane such that in the new frame the
charge density takes the more simple form:

i\? §\? z\?
p=p|(=) +(3) +(=) |-
P p[(A) (B) <c) ] (56)
The coordinates and the components of the electric field in both frames are then
related as follows:

(54

f=xXcosp+§sing E,=E,cosp+E,sing
§=—fsinp+5cosp E,=-E,sing+E cosq (57)

z E,=E,.

Ny
Il

To find expressions for the quantities A, B, C, and ¢ we calculate the new second
moments of the charge distribution [Eq. (56)]. These new moments are related to
the old moments via transformation [Eqgs. (57)]. The angle ¢ is determined by the
requirement that in the new frame (%5) must vanish. We obtain the following
expressions for ¢,A,B,C:

tan2¢ = <T2§(—f§<72>
(A/k)2 = % [<i2> (1 + c0512<P) * <§2> <1 B COSIZ(P)] (58)
(B/k)2 - % [<f2> (1 B cosl2(P) * <§2> <1 * COSIZ(P)]

(Clk)=(z%).

Here the parameter & still depends on the precise choice of the distribution and is
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defined by
1 -1
k= I:—[ r“h(rz)dr] , (59)
3Jo
where h specifies the distribution with the normalization
j h(r*)r’dr = 1. (60)
0
Using the transformation [Eqgs. (57)] the averages in the nonrotated frame (xE, ),

(XE,), (SE,), and (SE,) can be expressed in terms of the averages in the rotated
frame as

(XE.) = = (%E,) cos’@ + (SE,) sin’p
<X-Es> = <§Ex> = _%(<XE~x> - <§Es>) sin 2(p (61)
(SE,) = = (xE,) sin’g + (SE,) cos’@.

The averages in the rotated frame (%E,) and (SE,) now result from the rotated
charge distribution [Eq. (56)] and have been given by Sacherer.” Using those
results we find for the unknown terms:

B N
Xox) = _IOAgAAO‘pBgBBS“p
i _yeiyo L[k (B C\_k _(C AY].
(SE.) = (ik.) = IO[Ag<A’A) Bg<B B)]Sm(pcos"’
(62)

T [

)= 'IOAgAA“”BgBBCOS‘p
- _ Ik (A B
(zE.) = cg(c c)

where I is the beam current averaged over one turn. The function g(p, q) is
defined by the integral expression:

g(p, q) du

»q)=73 .
2Jy (L+w)y(p*+ w)"™(q* + w)'”

The characteristic current /, contains all the constants that appear as a result of

the scaling transformation [Eqs. (29)] and as a result of the introduction of the

average current [ in Egs. (62). It is defined as

(63)

2nmgeoc® (> —1)*?
Asq Y

where n denotes the number of bunches per turn. The parameter A, in Eq. (64)

still depends on the type of distribution chosen in Eq. (56). However, as shown in

Ref. 2, this dependence is very weak for practical distributions, and we can take
A = 1/(5V5), which corresponds to a uniform distribution. With this approxima-

L= , (64)
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tion the coefficients of the potential function a, b, ¢, and d are completely
specified in terms of the moments (£°), (¥5), (5°), and (2?). If Egs. (62) is used
the solution of Egs. (54) becomes
_ (§")(FE,) — (%5) (SE,)
(F2)(5%) — (%5)

_ (R GE,) — (#5) (5E,)

(22)(5%) — (%5)° (65)
c=(ZE.)/(2?)
_(x5)(a—b)
-

For subsequent use in Section 5 we calculate the field energy of the bunch. The
total electric field energy of a free charge distribution is given by the integral:

W= %’ f D E?dx, (66)

where E is the electric field strength. Consider the following vector relation
between E and the position vector r, valid for any vector E for which VX E =0:

1E*=(r-E)(V-E)—V-[LE% + (r x E) X E]. (67)

If we substitute this expression into Eq. (66) we can convert the second term on
the right-hand side of Eq. (67) into a surface integral that goes to zero. With
V- E = p/¢gy, we obtain the following general expression for the total field energy
of a free-charge distribution:

W=J:J;J(r-E)pdx=qN((xEx)+(sEs>+<zEz>)’ (68)

with g the charge of a particle and N the total number of particles. For the
ellipsoidal charge distribution given in Eq. (55) this expression for W can be
reduced to the following form:

W 3NIk (- du

UOPO 2 I()A o . n BZ 1/2 C2 12 (69)
e (Gen) (Grn)

with A, B, and C given in Egs. (58) and J; given in Eq. (64). We note that the
magnetic field energy is also included in Eq. (69).

Furthermore we note that this expression for W is invariant for interchanges of A,
B, and C, as it must be. Finally, we note that for A = B the integral in Eq. (69)
can be calculated analytically, and the result obtained agrees with the expression
for the field energy of a uniformly charged ellipsoid with rotational symmetry, as
calculated by Hofmann and Struckmeier.> An alternative expression for the field
energy of the charge distribution is obtained by adding the first, third, and fourth

W:
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of Egs. (54). We then obtain with Eq. (68):
W = N(a(x*) +2d(%5) + b(5*) + c(2?)). (70)

This expression may be useful for calculating W in the numerical program when
a, b, ¢, and d are already known.

The time derivative of W is obtained by differentiation of Eq. (69) with respect
to A, B, and C, followed by a differentiation of the quantities A, B and C with
respect to time using Eqs. (58). We find the following expression for the time
derivative of W:

aw N
o ——<a—( 2) +2d—(£s’) +b——(s'2> +oo <22>) (71)
dt 2
A similar result was obtained by Hofmann and Struckmeier® for an ellipsoidal
bunch with uniform density.

5 MOMENT EQUATIONS

In Section 3 we derived the time-dependent Hamiltonian H, [Eq. (31)] for a
particle moving in the azimuthally varying magnetic field in the absence of space
charge. In Section 4 we defined the potential function ¢, [Eq. (51)] for a bunch
with ellipsoidal symmetry and with a linear approximation of the space-charge

forces. The total Hamiltonian under space-charge conditions H is found by
adding ¢, to the unperturbed Hamiltonian:

H=13p2+3[0.(7) — a(0)]%* + 3p7 — yn(v)p,
—3b(7)8% — d(7)%5 + 3p% + 3(Q.(v) — c(7))2%  (72)

Substituting this Hamiltonian into Eq. (5) we obtain for the Vlasow equation:

B} 7
—al+px f+(ps an)ij_f— [(Qx—a)f—ynﬁs—dﬂ—f
ot os Op«

f . T 0. —ep

Z

=0. (73)

From this equation we obtain the second-moment equations, as shown in Section
2. In a system with three degrees of freedom, 21 independent second moments
can be formed. However, since in our linear approximation the vertical motion of
a single particle is not coupled with the horizontal motion, we need not consider
cross terms between horizontal and vertical variables. We then have ten
independent second moments for the horizontal variables and three for the
vertical variables. From Eq. (73) we derive the following system of differential
equations for the second moments:

£ () =2(p.) (74)
T
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L (55 = (52 — (0~ a)(P) + yn(ap,) + () (9)
£ (2) = =20~ )(5.) + 2ym(pap,) +24(5P.) (76)
2 () =2(sp,) ~2ym(55) )
dt
L (55 = (32) — v (3p,) +b(5?) + d () 79)
£ (2) =2b(5p,) + 24(p,) 19)

T
£ (55) = (3p.) + (5B, — 7 () (%0)
T

& (5.5 = (- )p.) + v (52 +d(5p,) +b{) +d(p) (8D
L (55.) = (b} +b() + () ®)

L (550 = (5.6 — (D) — (@~ )55 + (sB) + () (8

£ (2 =2(2.) &)
T

£ (2p.) = (B2 — (0. — () (59)

£ (52 = ~2(Q. ~ 2p.) 56)
T

[Remark: We note that the second-moment equations can also be written in
matrix form by making use of the o-matrix notation

((x*) = 011, (xp;) = 012, (x5) = 033, etc.)

as introduced by K. Brown'' for the TRANSPORT computer code. The
first-order differential equation for this o-matrix has been given by Sacherer.?
The matrix method is also used in TRANSOPTR."?]

The time-dependent quantities Q,, Q,, and 7 are specified in Egs. (26), (27),
and (28), and the coefficients a, b, ¢, and d are given in terms of the second
moments (¥?), (%5), (§%), (Z*) via Egs. (58), and (62)-(65). The system
therefore forms a closed set of differential equations for the second moments and
can be integrated numerically for a given set of initial conditions. We note that
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the equations for the horizontal and vertical moments are mutually coupled due
to the space-charge effect, i.e., via the coefficients a, b, ¢, and d.

Furthermore we note that the three first-order differential equations for the
vertical moments can be reduced to one second-order differential equation for the
vertical RMS envelope z,, = (z2)"*:

dz‘ g2 (ZE,)

+Q2(r)z 16 3 - z =0, 87

where &, is the vertical RMS emittance defined as
&, =4((2*)(p: — (2p.)")". (88)

Due to our linear approximation of the space-charge forces this RMS emittance is
constant, as can be verified with Eqs. (84)-(86). Equation (87) is of the same
form as the RMS-envelope equations derived by Sacherer” for linear-accelerator
structures. In fact, this equation is valid for the general case, where the
space-charge forces may have a nonlinear part. However, the problem then lies in
the fact that the RMS emittance is no longer a constant. Recently, Hofmann and
Struckmeier® derived differential equations that relate the change of the RMS
emittances to the change of the nonlinear field energy in the bunch.

In Section 3 we also derived the smoothed Hamiltonian H, for an isochronous
cyclotron, as given in Eq. (47). This Hamiltonian was obtained from the
Hamiltonian H, [Eq. (31)] via a smoothing procedure and via the canonical
transformation defined in Eqs. (46). In principle, these transformations also must
be applied on the electric potential function defined in Eq. (51). The transforma-
tion given in Eqs. (46) is a point transformation that leaves the electrical potential
function unchanged. Note however that the second moments that contain p, and
P, will have a different meaning due to this transformation. As for the smoothing
procedure, we already noted that this transformation gives only a small
difference, on the order of the flutter between the old and new variables. We
neglect the change of the potential function due to this transformation.
Consequently the moment equations resulting from the smoothed Hamiltonian
H, are less accurate than the system given in Egs. (74)—(86). On the other hand,
these equations may give additional insight into the problem. The equations for
the vertical moments remain the same as in Eqs. (74)—(86) but with Q,(7)
replaced by the average value vZ. For the horizontal moments we find the
following system of equations:

() =2(8.) + v.(85) (89)
L (9. = (5~ 402~ 4)(E) +h(35) + () + () (90)

d . . »
5;(1)3) Vel PuPs) — 3(vi — 4a) (%P, ) +2d(5p,) (91)
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d—(f2> 2(8p,) — v, (%5) (92)
L (55 = 52~ 402 46)() — Inl(8p) + (BN + ) 99)
L (52) = —vlpab) ~ A2 - 4b)(5p.) +24(5p.) (94)
L (86) = (48 — () + (55.) + (56.) ©3)

L (pabs) = v ((52) — (92) — 402~ 4a)sp,) +
— 402~ 4b)($p.) + d((5p.) + (35.)) %6)

dir (P} = (PuPs) + 3v:((3ps) — (RP.)) — 4(vi — 4b)(iS) + d(&*)  (97)

(3523 = (pab) + Iv(55,) — (5.) — A2~ da)(85) + (%) (99)

If we subtract Eq. (97) from Eq. (98) and use the relation between a, b and, d
as given in Egs. (65) we find that the quantity
is an integral of motion. In fact, this means that in the final coordinate system for
which the unperturbed Hamiltonian H, is time independent, the total angular
canonical momentum of the bunch is conserved. We note that this result holds
not only for an ellipsoidal charge distribution but also for any charge distribution
with nonlinear space-charge forces. [In this more general case we have dL/dt =
—N((38¢/3%)) — (£3¢/35)) =0.]

The kinetic energy of a single particle in the bunch is equal to the Hamiltonian

H, as given in Eq. (47). Thus, for the total kinetic energy T of the bunch, we
have

T=g[<ﬁ§> +(P2) + (P2) +AVA((R2) + (82) + vE(22) + vu(($p.) — (35,))],
(100)
and for the time derivative of T we obtain with Egs. (89)—(98)
O N 2agap.) +20(5p,) + 2e(2.) +24((55.) + (3p.))
N d
=5[a£—i—r(£2>+2dd—r( )+b—( 2)+c——( >] (101)

Comparing this expression with the time derivative of the field energy as given in
Eq. (71) we find that, for the final time-independent Hamiltonian H,, the total
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energy U of the bunch
UO=T+W (102)

is conserved. i
Apart from the total angular momentum of the bunch L and the total energy of
the bunch U there is a third integral of Egs. (89)—(98), namely the quantity

& =4[(£2) (p3) — (2p.)* + (§*)(p?) — (3p,)*
+2((£8) (PuPs) — (£5) (5P N]* (103)

For an uncoupled canonical system each of the three terms (fz)(ﬁ,z) — (%p,)?,
(§2)(p2) — (8p,)?, and (£5) (p.p,) — (£P) (8P, ) is conserved, where the first term
corresponds to the transverse emittance and the second term with the longitudinal
emittance. For a coupled system only the sum of these three terms is conserved.
We note that the quantity € is a constant not only for the system Eqs. (89)-(98)
but also for all linear canonical systems with two degrees of freedom and arbitrary
coupling. It can easily be verified that it is an integral of motion of Eqs. (74)—(86)
also.

According to Liouville’s theorem the total volume occupied by the particles in
phase space is conserved. For a system with one degree of freedom the RMS
representation of the phase-space area takes the form given in Eq. (88). For a
system with two degrees of freedom we find the following expression for the RMS
representation of the four-dimensional phase space volume:

t=16{[(£*)(p3) — (2P )°I(5*)(p3) — (3B:)°]
+[(28)(Pubs) — (5Ps) (5P — [(£2) (82) (B.bs )?
+ (PR (P2) (£8)? + (22)(p2) (5. ) + (37)(P2) (%p)’]
+2[(2%) (3P, ) (Babs ) ($B:) + (8%) (2. ) {Pabs ) (2P
+(P2) (8B, ) (28) (%P, ) + (P3) (%P, ) (£5) (3P, )]
= 2[(£P) ($Ps ) (E8) (Pubs ) + (P ) (3P, ) (%Bs ) ($P: )}
(104)

The quantity 7 is conserved for all linear canonical systems with two degrees of
freedom and arbitrary coupling.

A special solution of the system of Eqs. (89)—(98) is obtained if we consider
bunches that have rotational symmetry with respect to the vertical axis through
the bunch, i.e., bunches with a circular horizontal cross section. To obtain this
solution the moments have to be chosen as follows:

§?) = (%), ($ps) = (%), (B2)=(pD)

(£8) = (pups) =0, ($px) = —(%p.) = L/2N.

(105)
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The moment equations for the circular bunch can be reduced to two second-order
differential equations for the horizontal and vertical RMS envelopes £, = (£*)'?
and 2, = (%)%

d’,, v:_  (8-8L*N>» 11 z
T A LS
m 0rm m (106)
d22m+ ). g2 11 (,\?m )?,,,) 0
Zn— """ T8\ )=,
d? VP T 16 1,2.8\2, 2,

with I the average beam current and the function g defined in Eq. (63).

Another special solution of the system of Eqs. (89)—(98) is the stationary
solution, which is obtained by putting the right-hand sides of the equations equal
to zero. In doing so one finds that the moments (%), (£§), (§°), and (Z?) can
be chosen freely and that all other moments can be expressed in terms of (£?),
(£8), (§%), and (2°). We note, however, that, under space-charge conditions,
only the stationary solution for the circular bunch is physically realistic. For
noncircular stationary bunches one finds that physical quantities that must be
positive (such as, for example, the second moment (p2) = (p2) + v,(5p,) +
1v2(5%)) become negative. In view of the rotational symmetry of the unperturbed
Hamiltonian H, it is not so surprising that nonrotational symmetric solutions
cannot be stationary.

r T T T
A/\/\_/§N
3.0+ —
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1L 1 |
0 1 2 3 [A
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FIGURE 1 The RMS sizes of a 1-mA/0.97-MeV coasting beam making four turns in the
minicyclotron ILEC, calculated numerically with the smoothed-moment equations, Eqgs. (89)—(98).
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FIGURE 2 The RMS rotation angle @ [Egs. (58)] and the longitudinal momentum spread 6 of a
1-mA/0.97-MeV coasting beam in the minicyclotron ILEC as calculated with Eqs. (89)—(98).
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FIGURE 3 The average kinetic energy 7/N [Eq. (100)], space-charge energy W/N [Eq. (70)], and
total energy U/N [Eq. (102)] of a 1-mA/0.97-MeV coasting beam in the minicyclotron ILEC as
calculated with Eqs. (89)-(98). The energies are normalized with respect to the nominal energy of the
particles, £ =0.97 MeV.
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Figures 1, 2, and 3 show some results obtained with the smoothed-moment
equations [Eqgs. (89)—(98)] for the minicyclotron ILEC' under construction at the
Eindhoven University. The calculations were done for a coasting beam making
four turns at a nominal radius 7, of 10cm [B(r,)=1.42T, v,=1.0004, v, =
0.1861, E =0.97 MeV] with an average beam current I of 1 mA and two bunches
per turn. The initial values of the moments were taken such that the beam would
be stationary if there were no space-charge effect. The integrals of motion
were taken as follows: &, = &=10mm-mrad, L/N = — 50 mm-mrad, %=6.45
(mm-mrad)®.

Figure 1 shows the time evolution of the RMS sizes of the bunch £,,,, $,,, and 2,
during the four turns. The relatively strong increase of the horizontal beam size
£, is due to the rotation of the bunch around its vertical axis.

Figure 2 depicts the RMS rotation angle ¢ of the bunch as defined in Egs. (58)
and the longitudinal momentum spread & =2(p2)"*>=2((p2) + v, (£p,) +
1v2(£?))"2. Under the assumed conditions the momentum spread increases
=~0.3% per turn and the rotation angle @ increases ~3 degrees per turn.

In Fig. 3 we give the average kinetic energy in the bunch T/N as defined in Eq.
(100) and the average space-charge energy in the bunch W/N as defined in Eq.
(70).

Both quantities are normalized with respect to the nominal energy of the
particles E =0.97MeV. It can be seen from Fig. 3 that there is an exchange
between the two forms of energy but that the total energy U/N is conserved.

Finally, we note that we made the same calculations as described above with
the nonsmoothed system given in Eqgs. (74)—(86). The initial values of the old
moments, needed for the integration of Eqgs. (74)—(86), were calculated from the
initial values of the new moments by applying the transformation given in Egs.
(46), which relates both systems if one neglects the smoothing transformation.
Under the assumed conditions the deviation between the results obtained with
both systems of moment equations was, in general, less than one per cent.

6 CONCLUSION

We have derived moment equations for the particle distribution of a bunched
beam in an AVF cyclotron. Within the approximations made, the numerical
integration of these equations will give the time development of the RMS
properties of the bunch under space-charge conditions. The most important
approximations in our model are the assumption of an ellipsoidal charge
distribution and the assumption of linear space-charge forces. For linear
accelerator structures the assumption of an ellipsoidal charge distribution seems
to be a good approximation in practice.>” For the AVF cyclotron this assumption
is not trivial because of the coupling between the transverse and longitudinal
variables in the unperturbed Hamiltonian. In the multiparticle code used at
GANIL the bunch is simulated by a Gaussian ellipsoidal distribution, and the
results obtained with this code seem to be satisfactory.* On the other hand,
Adam® found numerically that under certain conditions the bunch shape starts to
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deviate considerably from the ellipsoidal shape. The choice of the initial
distribution, the energy of the particles, and the average beam current seem to be
important factors in this aspect.

As for our second assumption, we note that in linear-accelerator structures the
nonlinear parts of the space-charge forces are responsible for RMS emittance
growth. For not-too-high beam currents this effect could be neglected in a first
approximation. However, in an AVF cyclotron the nonlinear part of the electric
field will be determined first of all by the deviation between the actual
geometrical bunch shape and the ellipsoidal shape. Therefore, we expect that the
validity of the second assumption mainly depends on the accuracy of the first
assumption. We conclude that the possibilities and the restrictions of the model
presented in this paper should be further evaluated by comparing the results with
numerical many-particle calculations.
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