67 research outputs found

    Anion redox as a means to ferive layered manganese oxychalcogenides with exotic intergrowth structures

    Get PDF
    Topochemistry enables step-by-step conversions of solid-state materials often leading to metastable structures that retain initial structural motifs. Recent advances in this field revealed many examples where relatively bulky anionic constituents were actively involved in redox reactions during (de)intercalation processes. Such reactions are often accompanied by anion-anion bond formation, which heralds possibilities to design novel structure types disparate from known precursors, in a controlled manner. Here we present the multistep conversion of layered oxychalcogenides Sr2MnO2Cu1.5Ch2 (Ch = S, Se) into Cu-deintercalated phases where antifluorite type [Cu1.5Ch2]2.5- slabs collapsed into two-dimensional arrays of chalcogen dimers. The collapse of the chalcogenide layers on deintercalation led to various stacking types of Sr2MnO2Ch2 slabs, which formed polychalcogenide structures unattainable by conventional high-temperature syntheses. Anion-redox topochemistry is demonstrated to be of interest not only for electrochemical applications but also as a means to design complex layered architectures

    Ion implantation in nanodiamonds: Size effect and energy dependence

    Get PDF
    Nanoparticles are ubiquitous in nature and are increasingly important for technology. They are subject to bombardment by ionizing radiation in a diverse range of environments. In particular, nanodiamonds represent a variety of nanoparticles of significant fundamental and applied interest. Here we present a combined experimental and computational study of the behaviour of nanodiamonds under irradiation by xenon ions. Unexpectedly, we observed a pronounced size effect on the radiation resistance of the nanodiamonds: particles larger than 8 nm behave similarly to macroscopic diamond (i.e. characterized by high radiation resistance) whereas smaller particles can be completely destroyed by a single impact from an ion in a defined energy range. This latter observation is explained by extreme heating of the nanodiamonds by the penetrating ion. The obtained results are not limited to nanodiamonds, making them of interest for several fields, putting constraints on processes for the controlled modification of nanodiamonds, on the survival of dust in astrophysical environments, and on the behaviour of actinides released from nuclear waste into the environment

    Complex microstructure and magnetism in polymorphic CaFeSeO

    No full text
    The structural complexity of the antiferromagnetic oxide selenide CaFeSeO is described. The compound contains puckered FeSeO layers composed of FeSe2O2 tetrahedra sharing all their vertexes. Two polymorphs coexist that can be derived from an archetype BaZnSO structure by cooperative tilting of the FeSe2O2 tetrahedra. The polymorphs differ in the relative arrangement of the puckered layers of vertex-linked FeSe2O2 tetrahedra. In a non-centrosymmetric Cmc21 polymorph (a = 3.89684(2) Å, b = 13.22054(8) Å, c = 5.93625(2) Å) the layers are related by the C-centring translation while in a centrosymmetric Pmcn polymorph, with a similar cell metric (a =3.89557(6) Å, b = 13.2237(6) Å, c = 5.9363(3) Å), the layers are related by inversion. The compound shows long range antiferromagnetic order below a Neél temperature of 159(1) K with both polymorphs showing antiferromagnetic coupling via Fe–O–Fe linkages and ferromagnetic coupling via Fe–Se–Fe linkages within the FeSeO layers. The magnetic susceptibility also shows evidence for weak ferromagnetism which is modeled in the refinements of the magnetic structure as arising from an uncompensated spin canting in the non-centrosymmetric polymorph. There is also a spin glass component to the magnetism which likely arises from the disordered regions of the structure evident in the transmission electron microscopy
    • …
    corecore