56 research outputs found

    Assortative mating and within-spouse pair comparisons

    Get PDF
    Spousal comparisons have been proposed as a design that can both reduce confounding and estimate effects of the shared adulthood environment. However, assortative mating, the process by which individuals select phenotypically (dis)similar mates, could distort associations when comparing spouses. We evaluated the use of spousal comparisons, as in the within-spouse pair (WSP) model, for aetiological research such as genetic association studies. We demonstrated that the WSP model can reduce confounding but may be susceptible to collider bias arising from conditioning on assorted spouse pairs. Analyses using UK Biobank spouse pairs found that WSP genetic association estimates were smaller than estimates from random pairs for height, educational attainment, and BMI variants. Within-sibling pair estimates, robust to demographic and parental effects, were also smaller than random pair estimates for height and educational attainment, but not for BMI. WSP models, like other within-family models, may reduce confounding from demographic factors in genetic association estimates, and so could be useful for triangulating evidence across study designs to assess the robustness of findings. However, WSP estimates should be interpreted with caution due to potential collider bias

    Author Correction: Bayesian reassessment of the epigenetic architecture of complex traits

    Get PDF
    The original version of this Article contains an error in Fig. 3 in which panel B was inadvertently duplicated from panel A. This has been corrected in both the PDF and HTML versions of the Article

    Chlorogenic Acid Stimulates Glucose Transport in Skeletal Muscle via AMPK Activation: A Contributor to the Beneficial Effects of Coffee on Diabetes

    Get PDF
    Chlorogenic acid (CGA) has been shown to delay intestinal glucose absorption and inhibit gluconeogenesis. Our aim was to investigate the role of CGA in the regulation of glucose transport in skeletal muscle isolated from db/db mice and L6 skeletal muscle cells. Oral glucose tolerance test was performed on db/db mice treated with CGA and soleus muscle was isolated for 2-deoxyglucose transport study. 2DG transport was also examined in L6 myotubes with or without inhibitors such as wortmannin or compound c. AMPK was knocked down with AMPKα1/2 siRNA to study its effect on CGA-stimulated glucose transport. GLUT 4 translocation, phosphorylation of AMPK and Akt, AMPK activity, and association of IRS-1 and PI3K were investigated in the presence of CGA. In db/db mice, a significant decrease in fasting blood sugar was observed 10 minutes after the intraperitoneal administration of 250 mg/kg CGA and the effect persisted for another 30 minutes after the glucose challenge. Besides, CGA stimulated and enhanced both basal and insulin-mediated 2DG transports in soleus muscle. In L6 myotubes, CGA caused a dose- and time-dependent increase in glucose transport. Compound c and AMPKα1/2 siRNA abrogated the CGA-stimulated glucose transport. Consistent with these results, CGA was found to phosphorylate AMPK and ACC, consistent with the result of increased AMPK activities. CGA did not appear to enhance association of IRS-1 with p85. However, we observed activation of Akt by CGA. These parallel activations in turn increased translocation of GLUT 4 to plasma membrane. At 2 mmol/l, CGA did not cause any significant changes in viability or proliferation of L6 myotubes. Our data demonstrated for the first time that CGA stimulates glucose transport in skeletal muscle via the activation of AMPK. It appears that CGA may contribute to the beneficial effects of coffee on Type 2 diabetes mellitus

    Dissociation by steroids of eosinophilic inflammation from airway hyperresponsiveness in murine airways

    Get PDF
    BACKGROUND: The link between eosinophils and the development of airway hyperresponsiveness (AHR) in asthma is still controversial. This question was assessed in a murine model of asthma in which we performed a dose ranging study to establish whether the dose of steroid needed to inhibit the eosinophil infiltration correlated with that needed to block AHR. METHODS: The sensitised BALB/c mice were dosed with vehicle or dexamethasone (0.01–3 mg/kg) 2 hours before and 6 hours after each challenge (once daily for 6 days) and 2 hours before AHR determination by whole-body plethysmography. At 30 minutes after the AHR to aerosolised methacholine the mice were lavaged and differential white cell counts were determined. Challenging with antigen caused a significant increase in eosinophils in the bronchoalveolar lavage (BAL) fluid and lung tissue, and increased AHR. RESULTS: Dexamethasone reduced BAL and lung tissue eosinophilia (ED(50 )values of 0.06 and 0.08 mg/kg, respectively), whereas a higher dose was needed to block AHR (ED(50 )of 0.32 mg/kg at 3 mg/ml methacholine. Dissociation was observed between the dose of steroid needed to affect AHR in comparison with eosinophilia and suggests that AHR is not a direct consequence of eosinophilia. CONCLUSION: This novel pharmacological approach has revealed a clear dissociation between eosinophilia and AHR by using steroids that are the mainstay of asthma therapy. These data suggest that eosinophilia is not associated with AHR and questions the rationale that many pharmaceutical companies are adopting in developing low-molecular-mass compounds that target eosinophil activation/recruitment for the treatment of asthma

    A meta-analysis of epigenome-wide association studies on pregnancy vitamin B12 concentrations and offspring DNA methylation

    Get PDF
    This is the final version. Available on open access from Routledge via the DOI in this record. Data availability statement: Analysis plan and R code for cohort-specific analyses and meta-analyses are available via https://github.com/GiuliettaMonasso/PACE-B12-meta-analysis-of-EWAS. The dataset(s) supporting the conclusions of this article is available in the [Zenodo repository]. All further relevant data supporting the key findings of this study are available within the article and its Supplementary Information files or from the corresponding author upon reasonable request and subject to the study-specific data access procedures. Requests for access to the individual-level data for ALSPAC can be directed to GCS: [email protected]. Requests for access to the individual-level data for GENR can be directed to JFF: [email protected]. Requests for access to the individual-level data for INMA can be directed to MB: [email protected]. Requests for access to the individual-level data for MARBLES can be directed to RJS: [email protected]. Requests for access to the individual-level data for MoBa1 and MoBa2 can be directed to SEH: [email protected] vitamin B12 concentrations during pregnancy are associated with offspring health. Foetal DNA methylation changes could underlie these associations. Within the Pregnancy And Childhood Epigenetics Consortium, we meta-analysed epigenome-wide associations of circulating vitamin B12 concentrations in mothers during pregnancy (n = 2,420) or cord blood (n = 1,029), with cord blood DNA methylation. Maternal and newborn vitamin B12 concentrations were associated with DNA methylation at 109 and 7 CpGs, respectively (False Discovery Rate P-value <0.05). Persistent associations with DNA methylation in the peripheral blood of up to 482 children aged 4-10 y were observed for 40.7% of CpGs associated with maternal vitamin B12 and 57.1% of CpGs associated with newborn vitamin B12. Of the CpGs identified in the maternal meta-analyses, 4.6% were associated with either birth weight or gestational age in a previous work. For the newborn meta-analysis, this was the case for 14.3% of the identified CpGs. Also, of the CpGs identified in the newborn meta-analysis, 14.3% and 28.6%, respectively, were associated with childhood cognitive skills and nonverbal IQ. Of the 109 CpGs associated with maternal vitamin B12, 18.3% were associated with nearby gene expression. In this study, we showed that maternal and newborn vitamin B12 concentrations are associated with DNA methylation at multiple CpGs in offspring blood (PFDR<0.05). Whether this differential DNA methylation underlies associations of vitamin B12 concentrations with child health outcomes, such as birth weight, gestational age, and childhood cognition, should be further examined in future studies.Medical Research Council (MRC)European Research Council (ERC

    Caffeine's impairment of insulin-mediated glucose disposal cannot be solely attributed to adrenaline in humans

    No full text
    Caffeine (CAF) impedes insulin-mediated glucose disposal (IMGD) and increases plasma adrenaline concentrations ([ADR]; 0.6 nm). While the antagonism of ADR abolishes the CAF effect, infusion of ADR (0.75 nm) has no effect on IMGD. We have now examined CAF and ADR in concert to determine whether or not they elicit an additive response on IMGD. We hypothesized that CAF + ADR would elicit a greater effect than either CAF or ADR alone (i.e. that CAF effects would not be solely attributed to ADR). Subjects (n = 8) completed four trials in a randomized manner. An isoglycaemic–hyperinsulinaemic clamp was performed 30 min after the following treatments were administered: (1) placebo capsules and saline infusion ([ADR]= 0.29 nm) (PL trial), (2) CAF capsules (dose = 5 mg kg−1) and saline infusion ([ADR]= 0.62 nm) (CAF trial), (3) PL capsules and ADR infusion ([ADR]= 1.19 nm) (ADR trial), and (4) CAF capsules (dose = 5 mg kg−1) and ADR infusion ([ADR]= 0.93 nm) (CAF + ADR trial). As expected, CAF, ADR and CAF + ADR decreased (P ≤ 0.05) IMGD compared to PL. CAF + ADR resulted in a more pronounced decrease in IMGD versus PL (42%) compared to CAF (26%) or ADR (24%) alone; however, the effect was not fully additive (P = 0.08). Furthermore, CAF decreased IMGD to a similar magnitude as ADR despite a 50% lower [ADR]. In summary, while ADR contributes to the CAF-induced impairment in IMGD, it is not solely responsible for caffeine's effects
    • …
    corecore