95 research outputs found

    Periodic stellar variability from almost a million NGTS light curves

    Get PDF
    We analyse 829,481 stars from the Next Generation Transit Survey (NGTS) to extract variability periods. We utilise a generalisation of the autocorrelation function (the G-ACF), which applies to irregularly sampled time series data. We extract variability periods for 16,880 stars from late-A through to mid-M spectral types and periods between 0.1 and 130 days with no assumed variability model. We find variable signals associated with a number of astrophysical phenomena, including stellar rotation, pulsations and multiple-star systems. The extracted variability periods are compared with stellar parameters taken from Gaia DR2, which allows us to identify distinct regions of variability in the Hertzsprung-Russell Diagram. We explore a sample of rotational main-sequence objects in period-colour space, in which we observe a dearth of rotation periods between 15 and 25 days. This 'bi-modality' was previously only seen in space-based data. We demonstrate that stars in sub-samples above and below the period gap appear to arise from a stellar population not significantly contaminated by excess multiple systems. We also observe a small population of long-period variable M-dwarfs, which highlight a departure from the predictions made by rotational evolution models fitted to solar-type main-sequence objects. The NGTS data spans a period and spectral type range that links previous rotation studies such as those using data from Kepler, K2 and MEarth

    HD 213885b: A Transiting 1-D-Period Super-Earth With An Earth-Like Composition Around A Bright (V = 7.9) Star Unveiled By TESS

    Get PDF
    We report the discovery of the 1.008-d, ultrashort period (USP) super-Earth HD 213885b (TOI-141b) orbiting the bright (V = 7.9) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS, HARPS, and CORALIE radial velocities, we measure a precise mass of 8.8 ± 0.6 M⊕ for this 1.74 ± 0.05 R⊕ exoplanet, which provides enough information to constrain its bulk composition – similar to Earth’s but enriched in iron. The radius, mass, and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial velocities reveal an additional 4.78-d signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c, whose minimum mass of 19.9 ± 1.4 M⊕ makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an USP transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed

    Identification of new susceptibility loci for osteoarthritis (arcOGEN):a genome-wide association study

    Get PDF
    To access publisher's full text version of this article. Please click on the hyperlink in Additional Links field.Osteoarthritis is the most common form of arthritis worldwide and is a major cause of pain and disability in elderly people. The health economic burden of osteoarthritis is increasing commensurate with obesity prevalence and longevity. Osteoarthritis has a strong genetic component but the success of previous genetic studies has been restricted due to insufficient sample sizes and phenotype heterogeneity. We undertook a large genome-wide association study (GWAS) in 7410 unrelated and retrospectively and prospectively selected patients with severe osteoarthritis in the arcOGEN study, 80% of whom had undergone total joint replacement, and 11,009 unrelated controls from the UK. We replicated the most promising signals in an independent set of up to 7473 cases and 42,938 controls, from studies in Iceland, Estonia, the Netherlands, and the UK. All patients and controls were of European descent. We identified five genome-wide significant loci (binomial test p≤5·0×10(-8)) for association with osteoarthritis and three loci just below this threshold. The strongest association was on chromosome 3 with rs6976 (odds ratio 1·12 [95% CI 1·08-1·16]; p=7·24×10(-11)), which is in perfect linkage disequilibrium with rs11177. This SNP encodes a missense polymorphism within the nucleostemin-encoding gene GNL3. Levels of nucleostemin were raised in chondrocytes from patients with osteoarthritis in functional studies. Other significant loci were on chromosome 9 close to ASTN2, chromosome 6 between FILIP1 and SENP6, chromosome 12 close to KLHDC5 and PTHLH, and in another region of chromosome 12 close to CHST11. One of the signals close to genome-wide significance was within the FTO gene, which is involved in regulation of bodyweight-a strong risk factor for osteoarthritis. All risk variants were common in frequency and exerted small effects. Our findings provide insight into the genetics of arthritis and identify new pathways that might be amenable to future therapeutic intervention.Arthritis Research UK 1803

    Two mini-Neptunes transiting the adolescent K-star HIP 113103 confirmed with TESS and CHEOPS

    Get PDF
    We report the discovery of two mini-Neptunes in near 2:1 resonance orbits (P = 7.610303 d for HIP 113103 b and P = 14.245651 d for HIP 113103 c ) around the adolescent K-star HIP 113103 (TIC 121490076 ). The planet system was first identified from the TESS mission, and was confirmed via additional photometric and spectroscopic observations, including a ∼17.5 hour observation for the transits of both planets using ESA CHEOPS . We place ≤4.5 min and ≤2.5 min limits on the absence of transit timing variations over the three year photometric baseline, allowing further constraints on the orbital eccentricities of the system beyond that available from the photometric transit duration alone. With a planetary radius of Rp = 1.8290.067+0.0961.829_{-0.067}^{+0.096}R⊕, HIP 113103 b resides within the radius gap, and this might provide invaluable information on the formation disparities between super-Earths and mini-Neptunes. Given the larger radius Rp = 2.400.08+0.102.40_{-0.08}^{+0.10}R⊕ for HIP 113103 c , and close proximity of both planets to HIP 113103 , it is likely that HIP 113103 b might have lost (or is still losing) its primordial atmosphere. We therefore present simulated atmospheric transmission spectra of both planets using JWST , HST , and Twinkle . It demonstrates a potential metallicity difference (due to differences in their evolution) would be a challenge to detect if the atmospheres are in chemical equilibrium. As one of the brightest multi sub-Neptune planet systems suitable for atmosphere follow up, HIP 113103 b and HIP 113103 c could provide insight on planetary evolution for the sub-Neptune K-star population

    Dense sampling of bird diversity increases power of comparative genomics (vol 587, pg 252, 2020)

    Get PDF
    Publishe

    Early Release Science of the exoplanet WASP-39b with JWST NIRCam

    Full text link
    Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy provides the necessary means by constraining the abundances of oxygen- and carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution, and high precision that, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report time-series observations of the transiting exoplanet WASP-39b using JWST's Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0 - 4.0 μ\mum, exhibit minimal systematics, and reveal well-defined molecular absorption features in the planet's spectrum. Specifically, we detect gaseous H2_2O in the atmosphere and place an upper limit on the abundance of CH4_4. The otherwise prominent CO2_2 feature at 2.8 μ\mum is largely masked by H2_2O. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1-100×\times solar (i.e., an enrichment of elements heavier than helium relative to the Sun) and a sub-stellar carbon-to-oxygen (C/O) ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation or disequilibrium processes in the upper atmosphere.Comment: 35 pages, 13 figures, 3 tables, Nature, accepte

    A Mini-Neptune from TESS and CHEOPS Around the 120 Myr Old AB Dor Member HIP 94235

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) mission has enabled discoveries of the brightest transiting planet systems around young stars. These systems are the benchmarks for testing theories of planetary evolution. We report the discovery of a mini-Neptune transiting a bright star in the AB Doradus moving group. HIP 94235 (TOI-4399, TIC 464646604) is a V mag = 8.31 G-dwarf hosting a 3.00-0.28+0.32R⊠mini-Neptune in a 7.7 day period orbit. HIP 94235 is part of the AB Doradus moving group, one of the youngest and closest associations. Due to its youth, the host star exhibits significant photometric spot modulation, lithium absorption, and X-ray emission. Three 0.06% transits were observed during Sector 27 of the TESS Extended Mission, though these transit signals are dwarfed by the 2% peak-To-peak photometric variability exhibited by the host star. Follow-up observations with the Characterising Exoplanet Satellite confirmed the transit signal and prevented the erosion of the transit ephemeris. HIP 94235 is part of a 50 au G-M binary system. We make use of diffraction limited observations spanning 11 yr, and astrometric accelerations from Hipparcos and Gaia, to constrain the orbit of HIP 94235 B. HIP 94235 is one of the tightest stellar binaries to host an inner planet. As part of a growing sample of bright, young planet systems, HIP 94235 b is ideal for follow-up transit observations, such as those that investigate the evaporative processes driven by high-energy radiation that may sculpt the valleys and deserts in the Neptune population

    TOI-1259Ab - A Gas Giant Planet with 2.7 Per Cent Deep Transits and a Bound white Dwarf Companion

    Full text link
    We present TOI-1259Ab, a 1.0RJup gas giant planet transiting a 0.71R⊙ K-dwarf on a 3.48 d orbit. The system also contains a bound white dwarf companion TOI-1259B with a projected distance of ∼1600 au from the planet host. Transits are observed in nine TESS sectors and are 2.7 per cent deep - among the deepest known - making TOI-1259Ab a promising target for atmospheric characterization. Our follow-up radial velocity measurements indicate a variability of semiamplitude K=71ms1K=71\, \rm m\, s^{-1}, implying a planet mass of 0.44MJup. By fitting the spectral energy distribution of the white dwarf, we derive a total age of 4.080.53+1.214.08^{+1.21}_{-0.53} Gyr for the system. The K dwarf's light curve reveals rotational variability with a period of 28 d, which implies a gyrochronology age broadly consistent with the white dwarf's total age. © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.Fellow of the Swiss National Science Foundation
    corecore